Advertisement

A Method for Interactive Shape Detection in Cattle Images Using Genetic Algorithms

  • Horacio M. González–Velasco
  • Carlos J. García–Orellana
  • Miguel Macías–Macías
  • Ramón Gallardo–Caballero
  • Fernando J. Álvarez–Franco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

Segmentation methods based on deformable models have proved to be successful with difficult images, particularly those using genetic algorithms to minimize the energy function. Nevertheless, they are normally conceived as fully automatic, and not always generate satisfactory results. In this work, a method to include the information of fixed points whithin a contour detection system using point distribution models and genetic algorithms is presented. Also, an interactive scheme is proposed to take advantage of this technique. The method has been tested against a database of 93 cattle images, with a significant improvement in the success rate of the detections, from 61% up to 95%.

Keywords

Genetic Algorithm Active Contour Deformable Model Active Contour Model Interactive Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K.: Fundamentals of digital image processing. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  3. 3.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis. Medical Image Analysis 1, 91–108 (1996)CrossRefGoogle Scholar
  4. 4.
    Ballerini, L.: Genetic snakes for color image segmentation. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 268–277. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    MacEachern, L., Manku, T.: Genetic algorithms for active contour optimization. IEEE Proc. of the Int. Symp. on Circuit and Systems 4, 229–232 (1998)Google Scholar
  6. 6.
    Hill, A., Taylor, C.J.: Model-based image interpretation using genetic algorithms. Image and Vision Computing 10, 295–300 (1992)CrossRefGoogle Scholar
  7. 7.
    Hill, A., Cootes, T.F., Taylor, C.J., Lindley, K.: Medical image interpretation: a generic approach using def. templates. Jour. of Med. Informatics 19, 47–59 (1994)CrossRefGoogle Scholar
  8. 8.
    González, H., García, C., Macías, M., Gallardo, R., Acevedo, M.: Application of repeated GA to deformable template matching in cattle images. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Barret, W., Mortensen, E.: Interactive live-wire boundary extraction. Medical Image Analysis 1, 331–341 (1997)CrossRefGoogle Scholar
  10. 10.
    Liang, J., McInerney, T., Terzopoulos, D.: Interactive medical image segmentation with united snakes. In: Taylor, C., Colchester, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 1999. LNCS, vol. 1679, pp. 116–127. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Ginneken, B.v., Bruijne, M.d., Loog, M., Viergever, M.: Interactive Shape Models. In: Proceedings of SPIE, vol. 5032, pp. 1206–1216 (2003)Google Scholar
  12. 12.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their training and application. Comp. Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Horacio M. González–Velasco
    • 1
  • Carlos J. García–Orellana
    • 1
  • Miguel Macías–Macías
    • 1
  • Ramón Gallardo–Caballero
    • 1
  • Fernando J. Álvarez–Franco
    • 1
  1. 1.CAPI Research Group, University of Extremadura., Politechnic School. Av. de la Universidad, s/n. 10071 CáceresSpain

Personalised recommendations