Definition of a Model-Based Detector of Curvilinear Regions

  • Cédric Lemaitre
  • Johel Miteran
  • Jiri Matas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


This paper describes a new approach for detection of curvilinear regions. These features detection can be useful for any matching based algorithm such as stereoscopic vision. Our detector is based on curvilinear structure model, defined observing the real world. Then, we propose a multi-scale search algorithm of curvilinear regions and we report some preliminary results.


Repeatability Study Stereoscopic Vision Road Extraction Salient Region Detector Curvilinear Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tuytelars, T., Gool, L.V.: Matching widely separated views based on affine invariant regions. International journal of computer vision 59, 61–85 (2004)CrossRefGoogle Scholar
  2. 2.
    Matas, J., Chum, O., Urban, M., Padjla, T.: Robust wide baseline stereo form maximally stable extremal regions. In: Presented at British Machine Vision Conference (BMVC), pp. 384–393 (2002)Google Scholar
  3. 3.
    Belongie, S., Malik, J., J. P.: Shape matching and object recognition using shape context. IEEE Transaction on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)CrossRefGoogle Scholar
  4. 4.
    Smeukers, A.W.M., Woming, M., Santini, S., Gupta, A., Hamesh, J.: Content-based Image retrieval at the end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)CrossRefGoogle Scholar
  5. 5.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Presented at Alvey vision conference, pp. 147–151 (1998)Google Scholar
  7. 7.
    Mikolajczyk, K., Tuytelars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparaison of affine region detectors. International journal of computer vision 65, 43–72 (2005)CrossRefGoogle Scholar
  8. 8.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. In: International conference of computer vision, pp. 800–807 (2006)Google Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transaction on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  10. 10.
    Baumgartner, A., Steger, C., Mayer, H., Eckein, W.: MultiResolution semantic and context for road extraction. In: Verlag, S. (ed.) Semantic Modeling for the acquisition of topographic from images and maps, Basel - Switzerland, pp. 140–156 (1997)Google Scholar
  11. 11.
    Fisher, M.A., Tenebaum, J.M., Wolf, A.C.: Detection of roads and linear Structures in low resolution aerial imagery using a multisource knownledge integration technique. Computer graphics and image processing 15, 201–223 (1981)CrossRefGoogle Scholar
  12. 12.
    Geman, D., Jadynak, B.: An active testing model for tracking roads in satelite image. IEEE Transaction on Pattern Analysis and Machine Intelligence 18, 1–14 (1996)CrossRefGoogle Scholar
  13. 13.
    Walter, Klein, Massin, Zana: Automatic segmentation and registration of retinal fluorescing angiographies. In: Presented at CAFIA (2000)Google Scholar
  14. 14.
    Géraud, T.: Segmentation of curvilinear objects using watershed-based curve adjacency graph. In: Perales, F.J., Campilho, A., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 279–286. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Martinez-Perez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.T., Parker, K.H.: Segmentation of retinal blood vessels based on the second derivative and region growing. In: Presented at International Conference on Image Processing, Kobe (Japan) (1999)Google Scholar
  16. 16.
    Deschènes, F., Ziou, D.:Detection of line junctions in Gray-Level Images. In: Presented at International conference on Pattern Recognition (ICPR) (2000)Google Scholar
  17. 17.
    Ziou, D.: Optimal line detector. In: Presented at International conference on Pattern Recognition (ICPR), pp. 3762 (2000)Google Scholar
  18. 18.
    Steger, C.: An unbiased detector of curvilinear structures. IEEE Transaction on Pattern Analysis and Machine Intelligence 20, 113–125 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cédric Lemaitre
    • 1
  • Johel Miteran
    • 1
  • Jiri Matas
    • 2
  1. 1.LE2I Faculté Mirande Aile H. Université de Bourgogne BP 47870 21078 Dijon 
  2. 2.Center for Machine Perception, Dept.of Cybernetics, CTU Prague, Karlovo nam 13, CZ 12 135 

Personalised recommendations