Image Segmentation Based on Height Maps

  • Gabriele Peters
  • Jochen Kerdels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


In this paper we introduce a new method for image segmentation. It is based on a height map generated from the input image. The height map characterizes the image content in such a way that the application of the watershed concept provides a proper segmentation of the image. The height map enables the watershed method to provide better segmentation results on difficult images, e.g., images of natural objects, than without the intermediate height map generation. Markers used for the watershed concept are generated automatically from the input data holding the advantage of a more autonomous segmentation. In addition, we introduce a new edge detector which has some advantages over the Canny edge detector. We demonstrate our methods by means of a number of segmentation examples.


segmentation edge detection watershed height maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  2. 2.
    Kerdels, J.: Dynamisches Lernen von Nachbarschaften zwischen Merkmalsgruppen zum Zwecke der Objekterkennung. Diploma Thesis, University Dortmund (2006)Google Scholar
  3. 3.
    Serra, J.: Image Analysis and Mathematical Morphology. Ac. Press, NY (1988)Google Scholar
  4. 4.
    Beucher, S., Meyer, F.: The Morphological Approach of Segmentation: The Watershed Transformation. Mathematical Morphology in Image Processing. Marcel Dekker, New York (1992)Google Scholar
  5. 5.
    Najman, L., Schmitt, M.: Geodesic Saliency of Watershed Contours and Hierarchical Segmentation. IEEE PAMI 18(12), 1163–1173 (1996)Google Scholar
  6. 6.
    Bleau, A., Leon, J.: Watershed-Based Segmentation and Region Merging. Computer Vision and Image Understanding 77(3), 317–370 (2000)CrossRefGoogle Scholar
  7. 7.
    Canny, J.: A Computational Approach to Edge Detection. IEEE PAMI 8(6) (1986)Google Scholar
  8. 8.
    Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and Boundary Detection Improved by Surround Suppression of Texture Edges. Image and Vision Computing 22(8), 609–622 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gabriele Peters
    • 1
  • Jochen Kerdels
    • 2
  1. 1.University of Dortmund, Department of Computer Science - Computer Graphics, Otto-Hahn-Str. 16, D-44221 DortmundGermany
  2. 2.DFKI - German Research Center for Artificial Intelligence, Robotics Lab, Robert Hooke Str. 5, D-28359 BremenGermany

Personalised recommendations