Advertisement

Colour Adjacency Histograms for Image Matching

  • Allan Hanbury
  • Beatriz Marcotegui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

The use of 2D colour adjacency histograms for image matching in image retrieval scenarios is investigated. We present an algorithm for extracting representative colours from an image and a new method for matching 1D colour histograms and 2D colour adjacency histograms obtained from images quantised using different colour palettes. An experimental evaluation of the matching performance is done.

Keywords

Image Retrieval Query Image Image Match Mosaic Image Colour Palette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schettini, R., Ciocca, G., Zuffi, S.: A survey of methods for colour image indexing and retrieval in image databases. In: Luo, R., MacDonald, L. (eds.) Color Imaging Science: Exploiting Digital Media, John Wiley, New York, NY (2001)Google Scholar
  2. 2.
    Matas, J., Marik, R., Kittler, J.: The color adjacency graph representation of multi-coloured objects. Technical Report VSSP-TR-1/95, Univ. of Surrey (1995)Google Scholar
  3. 3.
    Lee, H.Y., Lee, H.K., Ha, Y.H.: Spatial color descriptor for image retrieval and video segmentation. IEEE Trans. on Multimedia 5(3), 358–367 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Scheunders, P.: A comparison of clustering algorithms applied to colour image quantization. Pattern Recognition Letters 18, 1379–1384 (1997)CrossRefGoogle Scholar
  5. 5.
    Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin, H.: An efficient color representation for image retrieval. IEEE Trans. Image Proc. 10(1), 140–147 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Meyer, F.: An overview of morphological segmentation. International Journal of Pattern Recognition and Articial Intelligence 15(7), 1089–1118 (2001)CrossRefGoogle Scholar
  7. 7.
    Angulo, J., Serra, J.: Color segmentation by ordered mergings. In: Proc. of the Int. Conf. on Image Processing. vol. II, pp. 125–128 (2003)Google Scholar
  8. 8.
    Hanbury, A., Serra, J.: Colour image analysis in 3D-polar coordinates. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. LNCS, vol. 2781, pp. 124–131. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Meyer, F.: Levelings, image simplification filters for segmentation. Journal of Mathematical Imaging and Vision 20, 59–72 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  12. 12.
    Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(7), 729–736 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Allan Hanbury
    • 1
  • Beatriz Marcotegui
    • 2
  1. 1.PRIP, Institute of Computer-Aided Automation, Vienna University of Technology, Favoritenstraße 9/1832, A-1040 ViennaAustria
  2. 2.Centre de Morphologie Mathématique, Ecole des Mines de Paris, 35, rue Saint-Honoré, 77305 FontainebleauFrance

Personalised recommendations