On Simulating 3D Fluorescent Microscope Images

  • David Svoboda
  • Marek Kašík
  • Martin Maška
  • Jan Hubený
  • Stanislav Stejskal
  • Michal Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

In recent years many various biomedical image segmentation methods have appeared. Though typically presented to be successful the majority of them was not properly tested against ground truth images. The obvious way of testing the quality of new segmentation was based on visual inspection by a specialist in the given field. The novel 3D biomedical image data simulator is presented in this paper. It offers the results of high quality. The comparison of generated synthetic data is compared against real image data using standard similarity techniques.

Keywords

synthetic image simulator procedural texture convolution fluorescent optical microscope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adiga, U., Chaudhuri, B.B.: An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Computer Vision and Pattern Recognition Unit, 1449–1458 (2001)Google Scholar
  2. 2.
    Bamford, P., Lovell, B.: Unsupervised cell nucleus segmentation with active contours. Signal Processing Special Issue: Deformable Models and Techniques for Image and Signal Processing 71, 203–213 (1998)MATHGoogle Scholar
  3. 3.
    Alexopoulos, L.G., Erickson, G.R., Guilak, F.: A method for quantifying cell size from differential interference contrast images: validation and aplication to osmotically stressed chondrocytes. Journal of Microscopy 205, 125–135 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Beliën, J.A.M., van Ginkel, H.A.H.M., Tekola, P., Ploeger, L.S., Poulin, N.M., Baak, J.P.A., van Diest, P.J.: Confocal DNA cytometry: A contour-based segmentation algorithm for automated three-dimensional image segmentation. Cytometry 49, 12–21 (2002)CrossRefGoogle Scholar
  5. 5.
    Matula, P., Svoboda, D.: Spherical object reconstruction using star-shaped simplex meshes. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 608–620. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Malpica, N., Solórzano, C.O.D, Vaquero, J.J., Santos, A., Vallcorba, I., García-Sagredo, J.M., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28, 289–297 (1997)CrossRefGoogle Scholar
  7. 7.
    Irinopoulou, T., Vassy, J., Beil, M., Nicolopoulou, P., Encaoua, D., Rigaut, J.P.: Three-dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks of prostatic lesions. Cytometry 27, 99–105 (1997)CrossRefGoogle Scholar
  8. 8.
    Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour segmentation: A tool for the localization of spots in confocal images. Cytometry 23, 15–21 (1996)CrossRefGoogle Scholar
  9. 9.
    Grigoryan, A.M., Hostetter, G., Kallioniemi, O., Dougherty, E.R.: Simulation toolbox for 3d-fish spot-counting algorithms. Real-Time Imaging 8(3), 203–212 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Lockett, S.J., Sudar, D., Thompson, C.T., Pinkel, D., Gray, J.W.: Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 31, 275–286 (1998)CrossRefGoogle Scholar
  11. 11.
    Solórzano, C.O.D., Rodriguez, E.G., Jones, A., Pinkel, D., Gray, J.W., Sudar, D., Lockett, S.J.: Segmentation of confocal microscope images of cell nuclei in thick tissue sections. Journal of Microscopy 193, 212–226 (1999)CrossRefGoogle Scholar
  12. 12.
    Lehmussola, A., Selinummi, J., Ruusuvuori, P., Niemist, A., Yli-Harja, O.: Simulating fluorescent microscope images of cell populations. In: EMBC 2005. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3153 – 3156 (2005)Google Scholar
  13. 13.
    Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern Recogn. Lett. 24(9-10), 1331–1337 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  15. 15.
    Perlin, K.: An image synthesizer. In: SIGGRAPH 1985. Proceedings of the 12th annual conference on Computer graphics and interactive techniques, New York, USA, pp. 287–296. ACM Press, New York (1985)CrossRefGoogle Scholar
  16. 16.
    Rousselle, C., Paillasson, S., Robert-Nicoud, M., Ronot, X.: Chromatin texture analysis in living cells. The Histochemcal J. 31(1), 63–70 (1999)CrossRefGoogle Scholar
  17. 17.
    Klein, A.D., van den Doel, L.R., Young, I.T., Ellenberger, S.L., van Vliet, L.: Quantitative evaluation and comparison of light microscopes. In: Optical Investigation of Cells In Vitro and In Vivo. Proc. SPIE, Progress in Biomedical Optics, vol. 3260, pp. 162–173 (1998)Google Scholar
  18. 18.
    da Costa, L.F., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press, Orlando, USA (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Svoboda
    • 1
  • Marek Kašík
    • 1
  • Martin Maška
    • 1
  • Jan Hubený
    • 1
  • Stanislav Stejskal
    • 1
  • Michal Zimmermann
    • 1
  1. 1.Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, BrnoCzech Republic

Personalised recommendations