Quantification of Bone Remodeling in the Proximity of Implants

  • Hamid Sarve
  • Carina B. Johansson
  • Joakim Lindblad
  • Gunilla Borgefors
  • Victoria Franke Stenport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

In histomorphometrical investigations of bone tissue modeling around screw-shaped implants, the manual measurements of bone area and bone-implant contact length around the implant are time consuming and subjective. In this paper we propose an automatic image analysis method for such measurements. We evaluate different discriminant analysis methods and compare the automatic method with the manual one. The results show that the principal difference between the two methods occurs in length estimation, whereas the area measurement does not differ significantly. A major factor behind the dissimilarities in the results is believed to be misclassification of staining artifacts by the automatic method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donath, K.: Die trenn-dunnschliffe-technik zur herstellung hist. präparate von nicht schneidbaren geweben und materialien. Der Präparator 34, 197–206 (1988)Google Scholar
  2. 2.
    Johansson, C., Morberg, P.: Importance of ground section thickness for reliable histomorphometrical results. Biomaterials 16, 91–95 (1995)CrossRefGoogle Scholar
  3. 3.
    Johansson, C., Morberg, P.: Cutting directions of bone with biomaterials in situ does influence the outcome of histomorphometrical quantification. Biomaterials 16, 1037–1039 (1995)CrossRefGoogle Scholar
  4. 4.
    Milan, S., Michael, F.: Handbook of Medical Imaging. SPIE Press, Bellingham, USA (2000)Google Scholar
  5. 5.
    Skarbek, W., Koschan, A.: Colour image segmentation - a survey. Technical report, Technical University Berlin (1994)Google Scholar
  6. 6.
    Ranefall, P.: Towards automatic quantification of immunohistochemistry using colour image analysis. PhD thesis, Uppsala University, Uppsala (1998)Google Scholar
  7. 7.
    Ballerini, et al.: Image segmentation by a genetic fuzzy c-means algorithm using color and spatial information. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 260–269. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Johansson, C.: On tissue reactions to metal implants. PhD thesis, Department of Biomaterials / Handicap Research, Göteborg University, Sweden (1991)Google Scholar
  9. 9.
    Duda, O., et al.: Pattern Classification. John Wiley and Sons, West Sussex, England (2001)MATHGoogle Scholar
  10. 10.
    Mathworks: Matlab Documentation R2006b, Function: rgb2hsv (2006)Google Scholar
  11. 11.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  12. 12.
    Koplowitz, J., Bruckstein, A.M.: Design of perimeter estimators for digized planar shapes. Trans. on Pattern Analysis and Machine Intelligence 11, 611–622 (1989)CrossRefGoogle Scholar
  13. 13.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 11, 37–46 (1960)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hamid Sarve
    • 1
  • Carina B. Johansson
    • 2
  • Joakim Lindblad
    • 1
  • Gunilla Borgefors
    • 1
  • Victoria Franke Stenport
    • 3
  1. 1.Centre for Image Analysis, Swedish University of Agricultural Sciences, Box 337, SE-751 05 UppsalaSweden
  2. 2.Department of Clinical Medicine, Örebro University, SE-701 85 ÖrebroSweden
  3. 3.Biomaterials Research Center, Göteborg University, SE-405 30 GöteborgSweden

Personalised recommendations