Advertisement

Multimodal Evaluation for Medical Image Segmentation

  • Rubén Cárdenes
  • Meritxell Bach
  • Ying Chi
  • Ioannis Marras
  • Rodrigo de Luis
  • Mats Anderson
  • Peter Cashman
  • Matthieu Bultelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

This paper is a joint effort between five institutions that introduces several novel similarity measures and combines them to carry out a multimodal segmentation evaluation. The new similarity measures proposed are based on the location and the intensity values of the misclassified voxels as well as on the connectivity and the boundaries of the segmented data. We show experimentally that the combination of these measures improves the quality of the evaluation, increasing the significance between different methods both visually and numerically and providing better understanding about their difference. The study shown here has been carried out using four different segmentation methods applied to a MRI simulated dataset of the brain.

Keywords

Multimodal evaluation Segmentation Similarity Measures Brain tissue segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y.: A review of recent evaluation methods for image segmentation. In: Int. Symposium on Signal Proc. and its Applications (ISSPA), pp. 148–151 (2001)Google Scholar
  2. 2.
    Yasnoff, W., Miu, J., Bacus, J.: Error measures for scene segmentation. Pattern Recognition 9, 217–231 (1977)CrossRefGoogle Scholar
  3. 3.
    Straters, K., Gerbrands, J.: Three-dimensional segmentation using a split, merge and group approach. Pattern Recognition Letters 12, 307–325 (1991)CrossRefGoogle Scholar
  4. 4.
    Pichon, E., Tannenbaum, A., Kikinis, R.: A statistically based flow for image segmentation. Medical Image Analysis 8, 267–274 (2004)CrossRefGoogle Scholar
  5. 5.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. PAMI 15(9), 850–863 (1993)Google Scholar
  6. 6.
    Crum, W., Camara, O., Hill, D.L.G.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Tr. Med. Imag. 25(11), 1451–1461 (2006)CrossRefGoogle Scholar
  7. 7.
    Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Transactions on Image Processing 14(11), 1773–1782 (2005)CrossRefGoogle Scholar
  8. 8.
    Udupa, J., LaBlanc, V., Schmidt, H., Imielinska, C., Saha, P., Grevera, G., Zhuge, Y., Molholt, P., Jin, Y., Currie, L.: A methodology for evaluating image segmentation algorithms. In: SPIE Conf. on Medical Imaging. Volume 4684, San Diego, CA, USA, pp. 266–277 (2002)Google Scholar
  9. 9.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rubén Cárdenes
    • 1
  • Meritxell Bach
    • 2
  • Ying Chi
    • 5
  • Ioannis Marras
    • 4
  • Rodrigo de Luis
    • 1
  • Mats Anderson
    • 3
  • Peter Cashman
    • 5
  • Matthieu Bultelle
    • 5
  1. 1.LPI, University of ValladolidSpain
  2. 2.EPFL, LausanneSwitzerland
  3. 3.MI, Linkoping UniversitySweden
  4. 4.Aristotle University of ThessalonikiGreece
  5. 5.Imperial CollegeUK

Personalised recommendations