Advertisement

Assessing Estrogen Receptors’ Status by Texture Analysis of Breast Tissue Specimens and Pattern Recognition Methods

  • Spiros Kostopoulos
  • Dionisis Cavouras
  • Antonis Daskalakis
  • Ioannis Kalatzis
  • Panagiotis Bougioukos
  • George Kagadis
  • Panagiota Ravazoula
  • George Nikiforidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

An image analysis system (IAS) was developed for the quantitative assessment of estrogen receptor’s (ER) positive status from breast tissue microscopy images. Twenty-four cases of breast cancer biopsies, immunohistochemically (IHC) stained for ER, were microscopically assessed by a histopathologist, following a clinical routine scoring protocol. Digitized microscopy views of the specimens were used in the IAS’s design. IAS comprised a/image segmentation, for nuclei determination, b/extraction of textural features, by processing of nuclei-images utilizing the Laws and Gabor filters and by calculating textural features from the processed nuclei-images, and c/PNN and SVM classifiers design, for discriminating positively stained nuclei. The proportion of the latter in each case’s images was compared against the physician’s score. Using Spearman’s rank correlation, high correlation was found between the histopathogist’s and IAS’s scores (rho=0.89, p<0.001) and 22/24 cases were correctly characterised, indicating IAS’s reliability in the quantitative evaluation of ER as additional assistance to physician’s assessment.

Keywords

Image Analysis Pattern Recognition Estrogen Receptor Breast Cancer Histopathology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sommer, S., Fuqua, S.A.: Estrogen receptor and breast cancer. Semin. Cancer Biol. 11, 339–352 (2001)CrossRefGoogle Scholar
  2. 2.
    Donegan, W.L.: Tumor-related prognostic factors for breast cancer. CA Cancer J. Clin. 47, 28–51 (1997)CrossRefGoogle Scholar
  3. 3.
    Jasani, B., Douglas-Jones, A., Rhodes, A., Wozniak, S., Barrett-Lee, P.J., Gee, J., Nicholson, R.: Measurement of estrogen receptor status by immunocytochemistry in paraffin wax sections. Methods Mol. Med. 120, 127–146 (2006)Google Scholar
  4. 4.
    Harvey, J.M., Clark, G.M., Osborne, C.K., Allred, D.C.: Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999)Google Scholar
  5. 5.
    Diaz, L.K., Sneige, N.: Estrogen receptor analysis for breast cancer: Current issues and keys to increasing testing accuracy. Adv. Anat. Pathol. 12, 10–19 (2005)CrossRefGoogle Scholar
  6. 6.
    Diaz, L.K., Sahin, A., Sneige, N.: Interobserver agreement for estrogen receptor immunohistochemical analysis in breast cancer: A comparison of manual and computer-assisted scoring methods. Ann. Diagn. Pathol. 8, 23–27 (2004)CrossRefGoogle Scholar
  7. 7.
    Mofidi, R., Walsh, R., Ridgway, P.F., Crotty, T., McDermott, E.W., Keaveny, T.V., Duffy, M.J., Hill, A.D., O’Higgins, N.: Objective measurement of breast cancer oestrogen receptor status through digital image analysis. Eur. J. Surg. Oncol. 29, 20–24 (2003)CrossRefGoogle Scholar
  8. 8.
    Lehr, H.A., Mankoff, D.A., Corwin, D., Santeusanio, G., Gown, A.M.: Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J. Histochem. Cytochem. 45, 1559–1565 (1997)Google Scholar
  9. 9.
    Makkink-Nombrado, S.V., Baak, J.P., Schuurmans, L., Theeuwes, J.W., van der Aa, T.: Quantitative immunohistochemistry using the cas 200/486 image analysis system in invasive breast carcinoma: A reproducibility study. Anal. Cell Pathol. 8, 227–245 (1995)Google Scholar
  10. 10.
    Kostopoulos, S., Cavouras, D., Daskalakis, A., Ravazoula, P., Nikiforidis, G.: Image analysis system for assessing the estrogen receptor’s positive status in breast tissue carcinomas. In: Proceedings of the International Special Topic Conference on Information Technology in Biomedicine, Ioannina Greece (2006)Google Scholar
  11. 11.
    Schnorrenberg, F., Tsapatsoulis, N., Pattichis, C.S., Schizas, C.N., Kollias, S., Vassiliou, M., Adamou, A., Kyriacou, K.: Improved detection of breast cancer nuclei using modular neural networks. IEEE Eng. Med. Biol. Mag. 19, 48–63 (2000)CrossRefGoogle Scholar
  12. 12.
    Patricio, M.A., Maravall, D.: A comparative study of contextual segmentation methods for digital angiogram analysis. Cybernetics and Systems: An International Journal 35, 63–83 (2004)CrossRefGoogle Scholar
  13. 13.
    Laws, K.: Rapid texture identification. In: Proceedings of the Image Processing for Missile Guidance, pp. 376-380 (1980)Google Scholar
  14. 14.
    Theodoridis, S., Koutroumbas, K.: Pattern recognition, 2nd edn. Elsevier, San Diego (2003)Google Scholar
  15. 15.
    Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Sys. Man Cyb. 3, 610–621 (1973)CrossRefGoogle Scholar
  16. 16.
    Galloway, M.M.: Texture analysis using gray-level run lengths. Computer Graphics and Image Processing 4, 172–179 (1975)CrossRefGoogle Scholar
  17. 17.
    Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on gabor filters. IEEE Trans. Image Processing 11 (2002)Google Scholar
  18. 18.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)CrossRefGoogle Scholar
  19. 19.
    Christanini, N., Taylor, J.S.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Spiros Kostopoulos
    • 1
  • Dionisis Cavouras
    • 2
  • Antonis Daskalakis
    • 1
  • Ioannis Kalatzis
    • 2
  • Panagiotis Bougioukos
    • 1
  • George Kagadis
    • 1
  • Panagiota Ravazoula
    • 3
  • George Nikiforidis
    • 1
  1. 1.Medical Image Processing and Analysis Group, Laboratory of Medical Physics, School of Medicine, University of Patras, 26500, RioGreece
  2. 2.Medical Image and Signal Processing Laboratory, Department of Medical Instruments, Technology, Technological Educational Institute of Athens, 12210 AthensGreece
  3. 3.Department of Pathology, University Hospital of Patras, 26500 RioGreece

Personalised recommendations