Decision Level Multiple Cameras Fusion Using Dezert-Smarandache Theory

  • Esteban Garcia
  • Leopoldo Altamirano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

This paper presents a model for multiple cameras fusion, which is based on Dezert-Smarandache theory of evidence. We have developed a fusion model which works at the decision fusion level to track objects on a ground plane using geographically distributed cameras. As we are fusing at decision level, track is done based on predefined zones. We present early results of our model tested on CGI animated simulations, applying a perspective-based basic belief assignment function. Our experiments suggest that the proposed technique yields a good improvement in tracking accuracy when spatial regions are used to track.

Keywords

Multiple Cameras Fusion Tracking Dezert-Smarandache Theory Decision Level Fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dasarathy, B.V.: Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE 85, 24–38 (1997)CrossRefGoogle Scholar
  2. 2.
    Lv, F., Kang, J., Nevatia, R., Cohen, I., Medioni, G.: Automatic tracking and labeling of human activities in a video sequence. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillanc, conjunction with ECCV 2004 (2004)Google Scholar
  3. 3.
    Green, R., Guan, L.: Quantifying and recognizing human movement patterns from monocular video images - part i: A new framework for modeling human motion (2003)Google Scholar
  4. 4.
    Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden markov models. In: CVPR 2005. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 2, pp. 955–960. IEEE Computer Society, Los Alamitos, CA, USA (2005)Google Scholar
  5. 5.
    Yan, W., Forsyth, D.A.: Learning the behavior of users in a public space through video tracking. In: WACV-MOTION 2005. Proceedings of the Seventh IEEE Workshops on Application of Computer Vision, Washington, DC, USA, vol. 1, pp. 370–377. IEEE Computer Society, Los Alamitos, CA, USA (2005)Google Scholar
  6. 6.
    Dezert, J.: Foundations for a new theory of plausible and paradoxical reasoning. Information and Security Journal 9 (2002)Google Scholar
  7. 7.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University, Princeton (1976)MATHGoogle Scholar
  8. 8.
    Smarandache, F., Dezert, J.: An introduction to the dsm theory for the combination of paradoxical, uncertain, and imprecise sources of information (2006)Google Scholar
  9. 9.
    Stein, G., Lee, L., Romano, R.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 758–767 (2000)CrossRefGoogle Scholar
  10. 10.
    Bradshaw, K.J., Reid, I.D., Murray, D.W.: The active recovery of 3d motion trajectories and their use in prediction. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 219–234 (1997)CrossRefGoogle Scholar
  11. 11.
    Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multiperson tracking for easyliving. In: Proceedings of the Third IEEE International Workshop on Visual Surveillance, pp. 3–10 (July 2000)Google Scholar
  12. 12.
    Khan, S., Shah, M.: Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1355–1360 (2003)CrossRefGoogle Scholar
  13. 13.
    Black, J., Ellis, T.: Multi camera image tracking. Image Vision Comput. 24(11), 1256–1267 (2006)CrossRefGoogle Scholar
  14. 14.
    Heikkila, J., Silven, O.: A real-time system for monitoring of cyclists and pedestrians. In: VS 1999. Proceedings of the Second IEEE Workshop on Visual Surveillance, Washington, DC, USA, p. 74. IEEE Computer Society, Los Alamitos, CA, USA (1999)Google Scholar
  15. 15.
    Hu, W., Hu, M., Zhou, X., Lou, J.: Principal axis-based correspondence between multiple cameras for people tracking. In: Tan, F.-T., Maybank, M.-S.(eds.) IEEE Trans. Pattern Anal. Mach. Intell., vol. 28(4), pp. 663 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Esteban Garcia
    • 1
  • Leopoldo Altamirano
    • 1
  1. 1.National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1.Tonantzintla, PuebaMexico

Personalised recommendations