Advertisement

Extracting Salient Points and Parts of Shapes Using Modified kd-Trees

  • Christian Bauckhage
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

This paper explores the use of tree-based data structures in shape analysis. We consider a structure which combines several properties of traditional tree models and obtain an efficiently compressed yet faithful representation of shapes. Constructed in a top-down fashion, the resulting trees are unbalanced but resolution adaptive. While the interior of a shape is represented by just a few nodes, the structure automatically accounts for more details at wiggly parts of a shape’s boundary. Since its construction only involves simple operations, the structure provides an easy access to salient features such as concave cusps or maxima of curvature. Moreover, tree serialization leads to a representation of shapes by means of sequences of salient points. Experiments with a standard shape database reveal that correspondingly trained HMMs allow for robust classification. Finally, using spectral clustering, tree-based models also enable the extraction of larger, semantically meaningful, salient parts of shapes.

Keywords

Hide Markov Model Recognition Rate Spectral Cluster Salient Point Shape Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt I. Psychologische Forschung 1, 47–58 (1922)CrossRefGoogle Scholar
  2. 2.
    Zusne, L.: Visual Perception of Form. Academic Press, New York (1970)Google Scholar
  3. 3.
    Hoffman, D.D.: Visual Intelligence. W.W. Norton, New York (1998)Google Scholar
  4. 4.
    Tarr, M.J., Bülthoff, H.H.: Object Recognition in Man, Monkey, and Machine. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  6. 6.
    Costa, L., Cesar, R.M.: Shape Analysis and Classification. CRC Press, Boca Raton (2000)Google Scholar
  7. 7.
    Jain, A.K., Vailaya, A.: Shape-based retrieval: A case study with trademark image databases. Pattern Recogn. 31(9), 1369–1390 (1998)CrossRefGoogle Scholar
  8. 8.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. J. Vis. Commun. Image R 9(4), 366–380 (1998)CrossRefGoogle Scholar
  9. 9.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  10. 10.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape space. IEEE Trans. Pattern Anal. Machine Intell. 26(3), 372–383 (2004)CrossRefGoogle Scholar
  11. 11.
    Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. In: Proc. CVPR, vol. II, pp. 350–357 (2004)Google Scholar
  12. 12.
    Bauckhage, C., Tsotsos, J., Bunn, F.: Automatic detection of abnormal gait. Image Vision Comput. (to appear, 2007)Google Scholar
  13. 13.
    Bauckhage, C., Tsotsos, J.: Bounding box splitting for robust shape classification. In: Proc. ICIP, vol. 2, pp. 478–481 (2005)Google Scholar
  14. 14.
    Bauckhage, C.: Tree-based signatures for shape classification. In: Proc. ICIP, pp. 2105–2108 (2006)Google Scholar
  15. 15.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. of the ACM 18(9), 509–517 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kubica, J., Masiero, J., Moore, A., Jedicke, R., Connolly, A.: Variable kd-tree algorithms for spatial pattern search and discovery. In: Proc. NIPS, pp. 691–698 (2005)Google Scholar
  17. 17.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 47–57 (1984)Google Scholar
  18. 18.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees: Theory and Applications. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Morgan, J., Sonquist, J.: Problems in the analysis of survey data and a proposal. J. Am. Stat. Assoc. 58, 415–434 (1963)zbMATHCrossRefGoogle Scholar
  20. 20.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth (1984)Google Scholar
  21. 21.
    Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Bicego, M., Murino, V.: Investigating hidden markov models’ capabilities in 2d shape classification. IEEE Trans. Pattern Anal. Machine Intell. 26(2), 281–286 (2004)CrossRefGoogle Scholar
  23. 23.
    Thakoor, N., Gao, J.: Shape classifier based on generalized probabilistic descent method with hidden markov descriptor. In: Proc. ICCV, vol. 1, pp. 495–502 (2005)Google Scholar
  24. 24.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Proc. NIPS, pp. 849–856 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Bauckhage
    • 1
  1. 1.Deutsche Telekom Laboratories, 10587 BerlinGermany

Personalised recommendations