A Distributed Computational Model of Spatial Memory Anticipation During a Visual Search Task

  • Jérémy Fix
  • Julien Vitay
  • Nicolas P. Rougier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4520)


Some visual search tasks require the memorization of the location of stimuli that have been previously focused. Considerations about the eye movements raise the question of how we are able to maintain a coherent memory, despite the frequent drastic changes in the perception. In this article, we present a computational model that is able to anticipate the consequences of eye movements on visual perception in order to update a spatial working memory.


Visual Search Spatial Attention Visual Scene Visual Search Task Spatial Working Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amari, S.I.: Dynamical study of formation of cortical maps. Biological Cybernetics 27, 77–87 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burr, D.: Eye movements, keeping vision stable. Current Biology 14 (2004)Google Scholar
  3. 3.
    Carpenter, R.: Movements of the Eyes, 2nd edition. Pion Ltd, London (1988)Google Scholar
  4. 4.
    Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R.: A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993)CrossRefGoogle Scholar
  5. 5.
    Craighero, L., Fadiga, L., Rizzolatti, G., Umilta, C.: Action for perception: a motor-visual attentional effect. Journal of Experimental Psychology 25 (1999)Google Scholar
  6. 6.
    Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychological Review 96, 433–458 (1989)CrossRefGoogle Scholar
  7. 7.
    Findlay, J.M., Brown, V.: Eye scanning of multi-element displays: I. scanpath planning. Vision Research 46, 179–195 (2006)CrossRefGoogle Scholar
  8. 8.
    Findlay, J.M., Brown, V.: Eye scanning of multi-element displays: II. Saccade planning. Vision Research 46, 216–227 (2006)CrossRefGoogle Scholar
  9. 9.
    Goodale, M.A., Milner, A.D.: Seperate visual pathways for perception and action. Trends in Neurosciences 15, 20–25 (1992)CrossRefGoogle Scholar
  10. 10.
    Hamker, F.H.: A dynamic model of how feature cues guide spatial attention. Vision Research 44, 501–521 (2004)CrossRefGoogle Scholar
  11. 11.
    Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2, 194–203 (2001)CrossRefGoogle Scholar
  12. 12.
    James, W.: The principles of psychology. Holt, New York (1890)Google Scholar
  13. 13.
    Jeannerod, M.: Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)CrossRefGoogle Scholar
  14. 14.
    Kleiser, R., Seitz, R.J., Krekelberg, B.: Neural correlates of saccadic suppression in humans. Current Biology 14, 386–390 (2004)CrossRefGoogle Scholar
  15. 15.
    Koch, C., Ullman, S.: Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. Human Neurobiology 4, 219–227 (1985)Google Scholar
  16. 16.
    Kowler, E., Andersen, E., Dosher, B., Blaser, E.: The role of attention in the programming of saccade. Vision Research 35, 1897–1916 (1995)CrossRefGoogle Scholar
  17. 17.
    Leigh, R.J., Zee, D.S.: The Neurology of Eye Movements, 3rd edn. FA Davis Company, Philadelphia (1999)Google Scholar
  18. 18.
    Li, W., Martin, L.: Saccadic suppression of displacement: separate influences of saccadic size and of target retinal eccentricity. Vision Research, vol. 37 (1997)Google Scholar
  19. 19.
    Luck, S.J., Chelazzi, L., Hillyard, S.A.: Neural mechanisms of spatial attention in areas v1, v2 and v4 of macaque visual cortex. Journal of Neurophysiology 77 (1997)Google Scholar
  20. 20.
    Merriam, E.P., Colby, C.L.: Active vision in parietal and extrastriate cortex. The. Neuroscientist 11, 484–493 (2005)CrossRefGoogle Scholar
  21. 21.
    Moore, T., Fallah, M.: Control of eye movements and spatial attention. PNAS 98, 1273–1276 (2001)CrossRefGoogle Scholar
  22. 22.
    Moore, T., Tolias, A.S., Schiller, P.H.: Visual representations during saccadic eye movements. Neurobiology 95, 8981–8984 (1998)Google Scholar
  23. 23.
    Moran, J., Desimone, R.: Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985)CrossRefGoogle Scholar
  24. 24.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciouness. Behavioral and Brain Sciences 24, 939–1031 (2001)CrossRefGoogle Scholar
  25. 25.
    Posner, M.I., Cohen, Y.: Components of visual orienting. In: Bouma, H., Bouwhuis, D. (eds.): Attention and performance X, pp. 531–556 (1984)Google Scholar
  26. 26.
    Posner, M.I., Petersen, S.E.: The attentional system of the human brain. Annual Review of Neurosciences 13, 25–42 (1990)CrossRefGoogle Scholar
  27. 27.
    Reynolds, J.H., Desimone, R.: The role of neural mechanisms of attention in solving binding problem. Neuron 14, 19–29 (1999)CrossRefGoogle Scholar
  28. 28.
    Rizzolatti, G., Riggio, L., Dascola, I., Ulmita, C.: Reorienting attention accross the horizontal and vertical meridians. Neuropsychologia 25, 31–40 (1987)CrossRefGoogle Scholar
  29. 29.
    Ross, J., Morrone, C., Goldberg, M.E., Burr, D.C.: Changes in visual perception at the time of saccades. Trends in Neurosciences 24, 113–121 (2001)CrossRefGoogle Scholar
  30. 30.
    Rougier, N.P., Vitay, J.: Emergence of Attention within a Neural Population. Neural Networks 19, 573–581 (2006)zbMATHCrossRefGoogle Scholar
  31. 31.
    Rumelhart, D.E., Hinton, G.E., McClelland, J.L.: A general framework for parallel distributed processing. In: Parallel Distributed Processing, vol. 1, MIT Press, Cambridge (1987)Google Scholar
  32. 32.
    Simons, J.S.: Current approaches to change blindness. Visual Cognition, vol. 7 (2000)Google Scholar
  33. 33.
    Sommer, M.A., Wurtz, R.H.: Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374–377 (2006)CrossRefGoogle Scholar
  34. 34.
    Taylor, J.G.: Neural bubble dynamics in two dimensions. Biological Cybernetics 80, 5167–5174 (1999)CrossRefGoogle Scholar
  35. 35.
    Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12, 97–136 (1980)CrossRefGoogle Scholar
  36. 36.
    Treue, S., Maunsell, J.H.R.: Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996)CrossRefGoogle Scholar
  37. 37.
    Tsotsos, J.K., Culhane, S.M., Lai, W.Y.K., Davis, N.: Modeling visual attention via selective tuning. Artificial Intelligence 78, 507–545 (1995)CrossRefGoogle Scholar
  38. 38.
    Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Analysis of Visual Behavior, pp. 549–586. MIT Press, Cambridge (1982)Google Scholar
  39. 39.
    Vitay, J., Rougier, N.P.: Using neural dynamics to switch attention. In: International Joint Conference on Neural Networks, IJCNN (2005)Google Scholar
  40. 40.
    Wolfe, J.M.: Visual search. In: Attention, University College London Press, London, UK (1998)Google Scholar
  41. 41.
    Wolfe, J.M.: Visual attention. In: Seeing: Handbook of Perception and Cognition, 2nd edn. De Valois KK, pp. 335–386 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jérémy Fix
    • 1
  • Julien Vitay
    • 1
  • Nicolas P. Rougier
    • 1
  1. 1.Loria, Campus Scientifique, BP239, 54506 Vandoeuvre-les-NancyFrance

Personalised recommendations