A View-Based 3D Object Shape Representation Technique

  • Yasser Ebrahim
  • Maher Ahmed
  • Siu-Cheung Chau
  • Wegdan Abdelsalam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4633)


In this paper we present a novel approach to 3D shape representation and matching utilizing a set of shape representations for 2D views of the object. The proposed technique capitalizes on the localization-preserving nature of the Hilbert space filling curve and the approximation capabilities of the Wavelet transform. Each 2D view of the object is represented by a concise 1D representation that can be used to search an image database for a match. The shape of the 3D image is represented by the set of 1D representations of its 2D views. Experimental results, on a subset of the Amsterdam Library of Object Images (ALOI) dataset, are provided.


Retrieval Rate Hilbert Curve Vertical Rotation Reeb Graph Symmetry Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paquet, E., Murching, A., Naveen, T., Tabatabai, A., Rioux, M.: Description of shape information for 2-d and 3-d objects. ignal Processing: Image Communication 16, 103–122 (2000)CrossRefGoogle Scholar
  2. 2.
    Zhang, C., Chen, T.: Efficient feature extraction for 2d/3d objects in mesh representation. In: CIP 2001 (2001)Google Scholar
  3. 3.
    Vranic, D.V., Saupe, D.: Description of 3d-shape using a complex function on the sphere. In: ICME 2002. IEEE International Conference on Multimedia and Expo., Lausanne, Switzerland, pp. 177–180 (2002)Google Scholar
  4. 4.
    Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A reflective symmetry descriptor for 3d models. Algorithmica 38(1) (2004)Google Scholar
  5. 5.
    Ip, C.Y., Lapadat, D., Sieger, L., Regli, W.C.: Using shape distributions to compare solid models, pp. 273–280 (2002)Google Scholar
  6. 6.
    Robert, O., Thomas, F., Bernard, C., David, D.: Shape distribution. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  7. 7.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  8. 8.
    Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T.: Shape-similarity search of three- dimensional models using parameterized statistics. Pacific Graphics 2002, pp. 265–274 (2002)Google Scholar
  9. 9.
    Biederman, I.: Recognition-by components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)CrossRefGoogle Scholar
  10. 10.
    Tangelder, J., Veltkamp, R.: A survey of content based 3d shape retrieval methods. In: Shape Modeling International, pp. 145–156 (2004)Google Scholar
  11. 11.
    Hilaga, M., Shinaagagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: SIGGRAPH 2001, Los Angeles, USA, pp. 203–212 (2001)Google Scholar
  12. 12.
    Bespalov, D., Shokoufandeh, A., Regli, W.C., Sun, W.: Scale-space representa- tion of 3d models and topological matching. In: Solid Modeling 2003, pp. 208–215 (2003)Google Scholar
  13. 13.
    Dickinson, S.: Object Representation and Recognition. Basil Blackwell (1999)Google Scholar
  14. 14.
    Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. International Journal of Computer Vision 14, 5–24 (1995)CrossRefGoogle Scholar
  15. 15.
    Naga Jyothi, D.: Multi-view technique for 3-d robotic object recognition system using neuro-fuzzy method.
  16. 16.
    Black, M.J., Jepson, A.D.: Eigen tracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26, 63–84 (1998)CrossRefGoogle Scholar
  17. 17.
    Ohba, K., Ikeuchi, K.: Detectability, uniqueness, and reliability of eigen windows for stable verification of partially occluded objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 1043–1048 (1997)CrossRefGoogle Scholar
  18. 18.
    Rao, R.: Dynamic appearance-based recognition. In: IEEE Conf. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 540–546 (1997)Google Scholar
  19. 19.
    Campbell, R., Flynn, P.: Eigenshapes for 3d object recognition in range data. In: IEEE Conf. Computer Vision and Pattern Recognition, Fort Collins, Colorado (1999)Google Scholar
  20. 20.
    Cyr, C.M., Kimia. 3d, B.B.: 3d object recognition using shape similarity-based aspect graph. In: 8th International Conference on Computer Vision, Vancouver, Canada, pp. 254–261 (2001)Google Scholar
  21. 21.
    Chen, D.-Y., Ouhyoung, M., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3d model retrieval. In: Eurographics, Granada, Spain, pp. 223–232 (2003)Google Scholar
  22. 22.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. International Journal of Computer Vision 61(1), 103–112 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yasser Ebrahim
    • 1
  • Maher Ahmed
    • 1
  • Siu-Cheung Chau
    • 1
  • Wegdan Abdelsalam
    • 2
  1. 1.Wilfrid Laurier University, Waterloo ON N2L 3C5Canada
  2. 2.University of Guelph, Guelph ON N1G 2W1Canada

Personalised recommendations