Enhancing Document Images Acquired Using Portable Digital Cameras

  • Rafael Dueire Lins
  • André R. Gomes e Silva
  • Gabriel Pereira e Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4633)

Abstract

Portable digital cameras are of widespread use today. Their image quality, low cost and portability have drastically changed the culture of photography. Professionals of many different areas start to take photos of documents, instead of photocopying them. This article presents techniques for improving the quality of document images digitalized with portable digital cameras.

Keywords

Digital Cameras Document Image Filtering Image Enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doermann, D., Liang, J., Li, H.: Progress in Camera-Based Document Image Analysis. In: ICDAR 2003, vol. V(1), p. 606 (2003)Google Scholar
  2. 2.
    Liang, J., Doermann, D., Li, H.: Camera-Based Analysis of Text and Documents: A Survey. Int. J. Document Analysis and Recognition (2005)Google Scholar
  3. 3.
    Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Patt.Recognition 35, 2593–2611 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Lu, S., Tan, C.L.: Camera document restoration for OCR. In: CBDAR 2005/ICDAR 2005, Korea (2005)Google Scholar
  5. 5.
    Shapiro, L.G., Stockman, G.C., Vision, C.: (2000), http://www.cse.msu.edu/~stockman/Book/book.html
  6. 6.
    Jagannathan, L., Jawahar, C.V.: Perspective correction methods for camera based document analysis. In: CBDAR 2005/ICDAR, Korea, pp. 148–154 (2005)Google Scholar
  7. 7.
    Lu, S., Tan, C.L.: The restoration of camera documents through image segmentation. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 484–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Seeger, M., Dance, C.: Binarising Camera Images for OCR. In: Proc. of Sixth ICDAR, pp. 0054–0059 (September 2001)Google Scholar
  9. 9.
    Clark, P., Mirmehdi, M.: Recognizing Text in Real Scenes. IJDAR 4(4), 243–257 (2002)CrossRefGoogle Scholar
  10. 10.
    Clark, P., Mirmehdi, M.: On the Recovery of Oriented Docs. from Single Images. In: CSTR-01-004, Bristol (2001)Google Scholar
  11. 11.
    Clark, P., Mirmehdi, M.: Location and Recovery of Text on Oriented Surfaces. In: SPIE CDRR VII, pp. 267–277 (2000)Google Scholar
  12. 12.
    Lins, R.D., Gomes e Silva, A.R., Pereira e Silva, G.F.: Assessing the Quality of Document Images Acquired with Portable Digital Cameras. In: ICDAR 2007 (2007)Google Scholar
  13. 13.
    Lins, R.D., Pereira e Silva, G.F., Gomes e Silva, A.R.: PhotoDoc: A Tool Process Document Images Acquired with Portable Digital Cameras (in preparation)Google Scholar
  14. 14.
    Lu, S.J., et al.: Perspective rectification of document etc. Image and Vision Computing 23, 541–553 (2005)CrossRefGoogle Scholar
  15. 15.
    Gomes e Silva, A.R., Lins, R.D.: Background Removal of Document Images Acquired Using Portable Digital Cameras. In: Kamel, M., Campilho, A. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 278–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Baird, H.S.: Document image defect models and their uses. In: ICDAR 1993, Japan, pp. 62–67. IEEE Comp. Soc., Los Alamitos (1993)Google Scholar
  17. 17.
    Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Patt. Recog. 35, 2593–2611 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Kanungo, T., Haralick, R.M., Phillips, I.: Global and local document degradation models. In: ICDAR, pp. 730–734 (1993)Google Scholar
  19. 19.
    da Silva, J.M.M., et al.: Binarizing and Filtering Historical Documents with Back-to-Front Interference. In: ACM-SAC 2006, Nancy (April 2006)Google Scholar
  20. 20.
    Pun, T.: Entropic Thresholding, A New Approach. C. Graphics and Image Processing 16(3) (1981)Google Scholar
  21. 21.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture Thresholding using the Entropy of the Histogram. Computer Vision, Graphics and Image Processing 29(3) (1985)Google Scholar
  22. 22.
    Wu, L.U., Songde, M.A., Hanqing, L.U.: An effective entropic thresholding for ultrasonic imaging. In: ICPR 1998. Intl. Conf. Patt. Recog. pp. 1522–1524 (1998)Google Scholar
  23. 23.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE T. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  24. 24.
    Yen, J.C., et al.: A new criterion for automatic multilevel thresholding. IEEE T. Image Process. IP-4, 370–378 (1995)Google Scholar
  25. 25.
    Johannsen, G., Bille, J.: A threshold selection method using information measures. In: ICPR 1982, pp. 140–143 (1982)Google Scholar
  26. 26.
    Lins, R.D., Alves, N.F.: A New Technique for Assessing the Performance of OCRs. In: IADIS. Int. Conf. on Comp. Applications, vol. 1, pp. 51–56. IADIS Press (2005)Google Scholar
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rafael Dueire Lins
    • 1
  • André R. Gomes e Silva
    • 1
  • Gabriel Pereira e Silva
    • 1
  1. 1.Universidade Federal de Pernambuco, Recife - PEBrazil

Personalised recommendations