Goal Reasoning with Context Record Types

  • Richard Dapoigny
  • Patrick Barlatier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4635)


The concept of goal is central in Artificial Intelligence and its modelling is a challenging issue. It has been given much attention in areas such as Requirement Engineering (RE) and Planning and Scheduling, where its modelling can support formal reasoning through goal types, goal attributes and relations to other components. However there is a lack of formalisms able to reason with goal structures in dynamic environments. We claim that a logical framework based on Intuitionistic Type Theory and more precisely, on Dependent Record Types is able to address this problem. The formal foundations rely on context modelling through dependent record types allowing partial knowledge and dynamic reasoning. For the purpose of goal modelling, we introduce a family of functions which map Context Record Types to Intentional Record Types expressing their related actions and goals. A case study in planning illustrates this approach.


Natural Language Processing Type Theory Goal Modelling Requirement Engineer Record Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betarte, G.: Type checking dependent (record) types and subtyping. Journal of Functional and Logic Programming 10(2), 137–166 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Boldini, P.: Formalizing Context in Intuitionistic Type theory. Fundamenta Informaticae 42, 1–23 (2000)Google Scholar
  3. 3.
    Bove, A., Capretta, V.: Nested General Recursion and Partiality in Type Theory TPHOL R. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 121–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cooper, R.: Records and Record Types in Semantic Theory. Journal of Logic and Computation 15(2), 99–112 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Coquand, C., Coquand, T.: Structured type theory. In: Workshop on Logical Frameworks and Meta-languages (1999)Google Scholar
  6. 6.
    Coquand, T., Pollack, R., Takeyama, M.: A Logical Framework with Dependently Typed Records. Fundamenta Informaticae 20, 1–22 (2005)Google Scholar
  7. 7.
    Dapoigny, R., Barlatier, P.: Dependent Record Types for Dynamic context representation. In: Bramer, M., Coenen, F., Tuson, A. (eds.) Research and Development in Intelligent Systems: Procs. of AI-06, vol. 23, Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Dapoigny, R., Barlatier, P.: Towards a Context Theory for Context-aware systems. In: Procs. of the 2nd IJCAI Workshop on Artificial Intelligence Techniques for Ambient Intelligence (2007)Google Scholar
  9. 9.
    Friesen, A., Börger, E.: A High-Level Specification for Semantic Web Service Discovery Services. In: Procs. of the sixth ACM Workshop ICWE 2006, pp. 16–23. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Gil, Y.: Description Logics and Planning. AI Magazine 26(2), 73–84 (2005)Google Scholar
  11. 11.
    Ginzburg, J.: Abstraction and Ontology: Questions as Propositional Abstracts in Type Theory with Records. Journal of Log. Comput. 15(2), 113–130 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Giunchiglia, F.: Contextual Reasoning. Istituto per la Ricerca Scientifica e Technologica, 9211-9220 (1992)Google Scholar
  13. 13.
    Ghidini, C., Giunchiglia, F.: Local Models Semantics, or Contextual Reasoning = Locality + Compatibility. Artificial Intelligence 127(2), 221–259 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hoffman, G., Breazeal, C.: Collaboration in Human-Robot Teams. In: Procs. of AIAA First Intelligent Systems Technical Conference (2004)Google Scholar
  15. 15.
    Howard, W.A, Seldin, J.P., Hindley, J.R.: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. The formulae-as-types notion of construction, pp. 479–490. Academic Press, London (1980)Google Scholar
  16. 16.
    Keller U., Lara R., Polleres A., Toma I., Kifer M., Fensel D.: WSMO Web Service Discovery DERI International, D5.1 v0.1 (2004)Google Scholar
  17. 17.
    Kopylov, A.: Dependent Intersection: A New Way of Defining Records in Type Theory. In: Procs. of the 18th Annual IEEE Symposium on Logic in Computer Science, pp. 86–95. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  18. 18.
    Van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Procs. of the 5th IEEE International Symposium on Requirements Engineering, pp. 249–263. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  19. 19.
    Martin-Lof, P.: Constructive Mathematics and Computer Programming. Methodology and Philosophy of Sciences 6, 153–175 (1982)Google Scholar
  20. 20.
    McCarthy, J.: Notes on Formalizing Context. In: Procs. of the 13th Int. Joint Conf. on Artificial Intelligence, pp. 555–560 (1993)Google Scholar
  21. 21.
    Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple Hierarchical Ordered Planner. In: Procs. of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 968–983 (1999)Google Scholar
  22. 22.
    Paulson, L.C.: The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning 5, 363–397 (1989)zbMATHCrossRefGoogle Scholar
  23. 23.
    Pollock, J.: The logical foundations of goal-regression planning in autonomous agents. Artificial Intelligence 106, 267–335 (1998)zbMATHCrossRefGoogle Scholar
  24. 24.
    Prat, N.: Goal formalisation and classification for requirements engineering. In: Procs. of the Third International Workshop on Requirements Engineering: Foundations of Software Quality, pp. 145–156 (1997)Google Scholar
  25. 25.
    Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism. Journal of Functional Programming 14(2), 145–189 (2004)zbMATHCrossRefGoogle Scholar
  26. 26.
    Rolland, C., Ben Achour, C.: Guiding The Construction Of Textual Use Case Specifications. Data and Knowledge Engineering Journal 25(1-2), 125–160 (1998)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)Google Scholar
  28. 28.
    Thomason, R.H.: Representing and Reasoning with Context. In: Calmet, J., Plaza, J. (eds.) AISC 1998. LNCS (LNAI), vol. 1476, pp. 29–41. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Thomason, R.H.: Type theoretic foundations for context, part 1: Contexts as complex typetheoretic objects. In: Bouquet, P., Serafini, L., Brézillon, P., Benercetti, M., Castellani, F. (eds.) CONTEXT 1999. LNCS (LNAI), vol. 1688, pp. 352–374. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Valentini, S.: Decidability in Intuitionistic Type Theory is functionally decidable. Mathematical Logic 42, 300–304 (1996)zbMATHCrossRefGoogle Scholar
  31. 31.
    Villadsen, J.: Multi-dimensional Type Theory: Rules, Categories, and Combinators for Syntax and Semantics. In: Christiansen, H., et al. (eds.) Int. Workshop on Constraint Solving and Language Processing, pp. 160–165 (2004)Google Scholar
  32. 32.
    Weld, D.: Recent advances in AI planning. AI Magazine 20(2), 93–123 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Richard Dapoigny
    • 1
  • Patrick Barlatier
    • 1
  1. 1.Université de Savoie, ESIA Laboratoire d’Informatique, Sytèmes, Traitement de l’Information et de la Connaissance B.P. 806, F-74016 ANNECY CedexFrance

Personalised recommendations