Local Testing of Message Sequence Charts Is Difficult

  • Puneet Bhateja
  • Paul Gastin
  • Madhavan Mukund
  • K. Narayan Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4639)


Message sequence charts are an attractive formalism for specifying communicating systems. One way to test such a system is to substitute a component by a test process and observe its interaction with the rest of the system. Unfortunately, local observations can combine in unexpected ways to define implied scenarios not present in the original specification. Checking whether a scenario specification is closed with respect to implied scenarios is known to be undecidable when observations are made one process at a time. We show that even if we strengthen the observer to be able to observe multiple processes simultaneously, the problem remains undecidable. In fact, undecidability continues to hold even without message labels, provided we observe two or more processes simultaneously. On the other hand, without message labels, if we observe one process at a time, checking for implied scenarios is decidable.


Test Process Local Test Regular Language Terminal Vertex Message Sequence Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs. IEEE Trans. Software Engg. 29(7), 623–633 (2003)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC Graphs. Theor. Comput. Sci. 331(1), 97–114 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide. Addison-Wesley, London, UK (1997)Google Scholar
  5. 5.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory of Regular MSC Languages. Inf. Comp. 202(1), 1–38 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, London, UK (1979)zbMATHGoogle Scholar
  7. 7.
    ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva (1997)Google Scholar
  8. 8.
    Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems. In: Proc 14th ACM STOC, 267–281 (1982)Google Scholar
  9. 9.
    Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM J. Comput 13(3), 441–460 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mauw, S., Reniers, M.A.: High-level message sequence charts. In: Proc SDL 1997, pp. 291–306. Elsevier, Amsterdam (1997)Google Scholar
  11. 11.
    Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Muscholl, A., Peterson, H.: A note on the commutative closure of star-free languages. Information Processing Letters 57(2), 71–74 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Advances in Petri Nets. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  15. 15.
    Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts. Computer Networks and ISDN Systems — SDL and MSC 28 (1996)Google Scholar
  16. 16.
    Thiagarajan, P.S.: A Trace Consistent Subset of PTL. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 438–452. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Wimmel, H.: Infinity of Intermediate States Is Decidable for Petri Nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 426–434. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Puneet Bhateja
    • 1
  • Paul Gastin
    • 2
  • Madhavan Mukund
    • 1
  • K. Narayan Kumar
    • 1
  1. 1.Chennai Mathematical Institute, ChennaiIndia
  2. 2.LSV, ENS Cachan & CNRSFrance

Personalised recommendations