Complexity of Pebble Tree-Walking Automata

  • Mathias Samuelides
  • Luc Segoufin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4639)


We consider tree-walking automata using k pebbles. The pebbles are either strong (can be lifted from anywhere) or weak (can be lifted only when the automaton is on it). For each k, we give the precise complexities of the problems of emptiness and inclusion of tree-walking automata using k pebbles.


Turing Machine Terminal State Expressive Power Current Node Inclusion Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Ullman, J.D.: Translations on a Context-Free Grammar. Information and Control 19(5), 439–475 (1971)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bojańczyk, M., Colcombet, T.: Tree-Walking Automata Cannot Be Determinized. Theor. Comput. Sci. 350(2-3), 164–173 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular languages. STOC  (2005)Google Scholar
  4. 4.
    Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power of pebble automata. In: ICALP (2006)Google Scholar
  5. 5.
    Comon, H., et al.: Tree Automata Techniques and Applications. at
  6. 6.
    Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable Optimization Problems for Database Logic Programs. In: STOC (1988)Google Scholar
  7. 7.
    Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Karhumäki, J., et al. (eds.) Jewels are forever, pp. 72–83. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Engelfriet, J., Hoogeboom, H.J.: Nested Pebbles and Transitive Closure. In: STACS (2006)Google Scholar
  9. 9.
    Engelfriet, J., Hoogeboom, H.J., Van Best, J.-P.: Trips on Trees. Acta Cybern. 14(1), 51–64 (1999)zbMATHGoogle Scholar
  10. 10.
    Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree transducers. Acta Inf. 39(9), 613–698 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Globerman, N., Harel, D.: Complexity Results for Two-Way and Multi-Pebble Automata and their Logics. Theor. Comput. Sci. 169(2), 161–184 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput. Syst. Sci. 66(1), 66–97 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-walking automata. IPL 99(1), 33–39 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Neven, F.: Extensions of Attribute Grammars for Structured Documents Queries. In: DBPL (1999)Google Scholar
  15. 15.
    Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata. IPL 30, 261–264 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mathias Samuelides
    • 1
  • Luc Segoufin
    • 2
  1. 1.LIAFA, Paris 7 
  2. 2.INRIA, Paris 11 

Personalised recommendations