Efficient Parameterized Preprocessing for Cluster Editing

  • Michael Fellows
  • Michael Langston
  • Frances Rosamond
  • Peter Shaw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4639)

Abstract

In the Cluster Editing problem, a graph is to be changed to a disjoint union of cliques by at most k operations of edge insertion or edge deletion. Improving on the best previously known quadratic-size polynomial-time kernelization, we describe how a crown-type structural reduction rule can be used to obtain a 6k kernelization bound.

References

  1. 1.
    Abu-Khzam, F., Collins, R., Fellows, M., Langston, M., Suters, W.H., Symons, C.: Kernelization algorithms for the vertex cover problem: theory and experiments. In: Proceedings of ALENEX 2004, pp. 62–69. ACM-SIAM Publications (2004)Google Scholar
  2. 2.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004) (Preliminary version In: Proceedings 43rd IEEE FOCS 2002, pp. 238–247)Google Scholar
  3. 3.
    Baldwin, N.E., Chesler, E.J., Kirov, S., Langston, M.A., Snoddy, J.R., Williams, R.W., Zhang, B.: Computational, integrative and comparative methods for the elucidation of gene regulatory networks. J. Biomedicine and Biotechnology 2, 172–180 (2005)CrossRefGoogle Scholar
  4. 4.
    Baldwin, N.E., Collins, R.L., Langston, M.A., Leuze, M.R., Symons, C.T., Voy, B.H.: High performance computational tools for motif discovery. In: Proceedings of the IEEE International Workshop on High Performance Computational Biology (HiCOMB). IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  5. 5.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58, 171–176 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chlebík, M., Chlebíková, J.: Improvement of Nemhauser-Trotter theorem and its applications in parameterized complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 174–186. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 36–53. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. Journal of Computer and System Sciences 71, 360–383 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, Z.Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Computing 32, 864–879 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Damaschke, P.: On the fixed-parameter enumerability of cluster editing. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 283–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Damaschke, P.: Fixed-parameter tractable generalizations of cluster editing. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 321–332. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. Theoretical Computer Science 351, 337–350 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative compression and modeled crown reductions: new FPT techniques, an improved algorithm for set splitting and a novel 2k kernelization for vertex cover. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Cluster Editing problem: implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory of Computing Systems 38, 373–392 (2005) (preliminary version In: Proceedings of the 5th Italian Conference on Algorithms and Complexity (CIAC 2003). Lecture Notes in Computer Science 2653, pp. 108–119. Springer-Verlag (2003))Google Scholar
  19. 19.
    Guo, J.: Manuscript (2007)Google Scholar
  20. 20.
    Krivanek, M., Moravek, J.: NP-hard problems in hierarchical tree clustering. Acta Informatica 23, 311–323 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  22. 22.
    Nemhauser, G., Trotter, L.: Vertex packings: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, School of EE&CS, University of Newcastle, Australia (2005)Google Scholar
  24. 24.
    Prieto, E., Sloper, C.: Looking at the stars. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 138–148. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144, 173–182 (2004) (Preliminary version In: 28th WG 2002, LNCS 2573, pp. 379–390 (2002))Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Fellows
    • 1
    • 2
  • Michael Langston
    • 3
  • Frances Rosamond
    • 1
  • Peter Shaw
    • 1
  1. 1.University of Newcastle, Callaghan NSW 2308Australia
  2. 2.Durham University, Institute of Advanced Study, Durham DH1 3RLUnited Kingdom
  3. 3.University of Tennessee, Knoxville, Tennessee 37996-3450U.S.A.

Personalised recommendations