Advertisement

On Approximating Optimal Weighted Lobbying, and Frequency of Correctness Versus Average-Case Polynomial Time

  • Gábor Erdélyi
  • Lane A. Hemaspaandra
  • Jörg Rothe
  • Holger Spakowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4639)

Abstract

We investigate issues regarding two hard problems related to voting, the optimal weighted lobbying problem and the winner problem for Dodgson elections. Regarding the former, Christian et al. [2] showed that optimal lobbying is intractable in the sense of parameterized complexity. We provide an efficient greedy algorithm that achieves a logarithmic approximation ratio for this problem and even for a more general variant—optimal weighted lobbying. We prove that essentially no better approximation ratio than ours can be proven for this greedy algorithm.

The problem of determining Dodgson winners is known to be complete for parallel access to NP [11]. Homan and Hemaspaandra [10] proposed an efficient greedy heuristic for finding Dodgson winners with a guaranteed frequency of success, and their heuristic is a “frequently self-knowingly correct algorithm.” We prove that every distributional problem solvable in polynomial time on the average with respect to the uniform distribution has a frequently self-knowingly correct polynomial-time algorithm. Furthermore, we study some features of probability weight of correctness with respect to Procaccia and Rosenschein’s junta distributions [15].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6(2), 157–165 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On complexity of lobbying in multiple referenda. In: Endriss, U., Lang, J. (eds.) First International Workshop on Computational Social Choice (COMSOC 2006), pp. 87–96 (workshop notes). Universiteit van Amsterdam (December 2006)Google Scholar
  3. 3.
    Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to manipulate. In: Proceedings of the 21st National Conference on Artificial Intelligence. AAAI Press, Stanford, California, USA (2006)Google Scholar
  4. 4.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  5. 5.
    Dodgson, C.: A method of taking votes on more than two issues. Pamphlet printed by the Clarendon Press, Oxford (1876)Google Scholar
  6. 6.
    Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: On approximating optimal weighted lobbying, and frequency of correctness versus average-case polynomial time. Technical Report TR-914, Department of Computer Science, University of Rochester, Rochester, NY (March 2007)Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. In: EATCS Texts in Theoretical Computer Science, Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Fishburn, P.: Condorcet social choice functions. SIAM Journal on Applied Mathematics 33(3), 469–489 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O.: Note on Levin’s theory of average-case complexity. Technical Report TR97-058, Electronic Colloquium on Computational Complexity (November 1997)Google Scholar
  10. 10.
    Homan, C., Hemaspaandra, L.: Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 528–539. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. Journal of the ACM 44(6), 806–825 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the 10th Structure in Complexity Theory Conference, pp. 134–147. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  13. 13.
    Levin, L.: Average case complete problems. SIAM Journal on Computing 15(1), 285–286 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McCabe-Dansted, J., Pritchard, G., Slinko, A.: Approximability of Dodgson’s rule. In: Endriss, U., Lang, J. (eds.) First International Workshop on Computational Social Choice (COMSOC 2006), pp. 331–344 (workshop notes). Universiteit van Amsterdam (December 2006)Google Scholar
  15. 15.
    Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity of manipulating elections. Journal of Artificial Intelligence Research 28, 157–181 (2007)MathSciNetGoogle Scholar
  16. 16.
    Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young elections. Theory of Computing Systems 36(4), 375–386 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Trevisan, L.: Lecture notes on computational complexity (Lecture 12) (2002), www.cs.berkeley.edu/~luca/notes/complexitynotes02.pdf
  18. 18.
    Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gábor Erdélyi
    • 1
  • Lane A. Hemaspaandra
    • 2
  • Jörg Rothe
    • 1
  • Holger Spakowski
    • 1
  1. 1.Institut für Informatik, Universität Düsseldorf, 40225 DüsseldorfGermany
  2. 2.Department of Computer Science, University of Rochester, Rochester, NY 14627USA

Personalised recommendations