Advertisement

From Micro to Macro: How the Overlap Graph Determines the Reduction Graph in Ciliates

  • Robert Brijder
  • Hendrik Jan Hoogeboom
  • Grzegorz Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4639)

Abstract

The string pointer reduction system (SPRS) and the graph pointer reduction system (GPRS) are important formal models of gene assembly in ciliates. The reduction graph is a useful tool for the analysis of the SPRS, providing valuable information about the way that gene assembly is performed for a given gene. The GPRS is more abstract than the SPRS – not all information present in the SPRS is retained in the GPRS. As a consequence the reduction graph cannot be defined for the GPRS in general, but we show that it can be defined if we restrict ourselves to the so-called realistic overlap graphs (which correspond to genes occurring in nature). Defining the reduction graph within the GPRS allows one to carry over from the SPRS to the GPRS several results that rely on the reduction graph.

Keywords

Gene Assembly Label Graph Reduction Graph Reality Edge Breakpoint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brijder, R., Hoogeboom, H.J., Muskulus, M.: Applicability of loop recombination in ciliates using the breakpoint graph. In: Berthold, M.R., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 97–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Brijder, R., Hoogeboom, H.J., Rozenberg, G.: The breakpoint graph in ciliates. In: Berthold, M.R., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.) CompLife 2005. LNCS (LNBI), vol. 3695, pp. 128–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brijder, R., Hoogeboom, H.J., Rozenberg, G.: Reducibility of gene patterns in ciliates using the breakpoint graph. Theor. Comput. Sci. 356, 26–45 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brijder, R., Hoogeboom, H.J., Rozenberg, G.: How overlap determines the macronuclear genes in ciliates. LIACS Technical Report 2007-02, [arXiv:cs.LO/0702171] (2007)Google Scholar
  5. 5.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells – Gene Assembly in Ciliates. Springer, Heidelberg (2004)MATHGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Harju, T., Petre, I., Rozenberg, G.: Characterizing the micronuclear gene patterns in ciliates. Theory of Computing Systems 35, 501–519 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Harju, T., Petre, I., Rozenberg, G.: Formal properties of gene assembly: Equivalence problem for overlap graphs. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 202–212. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Brijder
    • 1
  • Hendrik Jan Hoogeboom
    • 1
  • Grzegorz Rozenberg
    • 1
  1. 1.Leiden Institute of Advanced Computer Science, Universiteit Leiden, Niels Bohrweg 1, 2333 CA LeidenThe Netherlands

Personalised recommendations