Advertisement

Numerical Simulation of a Molten Carbonate Fuel Cell by Partial Differential Algebraic Equations

  • K. Chudej
  • M. Bauer
  • H. J. Pesch
  • K. Schittkowski

Abstract

The dynamical behavior of a molten carbonate fuel cell (MCFC) can be modeled by systems of partial differential algebraic equations (PDEAs) based on physical and chemical laws. Mathematical models for identification and control are considered as valuable tools to increase the life time of the expensive MCFC power plants, especially to derive control strategies for avoiding high temperature gradients and hot spots. We present numerical simulation results for a load change of a new one-dimensional counterflow MCFC model consisting of 34 nonlinear partial and ordinary differential algebraic-equations (PDEAs) based on physical and chemical laws. The PDAE system is discretized by the method of lines (MOL) based on forward, backward, and central difference formulae, and the resulting large system of semi-explicit differential-algebraic equations is subsequently integrated by an implicit DAE solver.

Keywords

Fuel Cell Molar Fraction Molten Carbonate Fuel Cell Anode Channel Fuel Cell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bauer, 1D-Modellierung und Simulation des dynamischen Verhaltens einer Schmelzcarbonatbrennstoffzelle, Diplomarbeit, Universität Bayreuth, 2006.Google Scholar
  2. [2]
    M. Bischoff, G. Huppmann, Operating Experience with a 250 kWel Molten Carbonate Fuel Cell (MCFC) Power Plant, Journal of Power Sources, 105,2 (2002), 216–221.CrossRefGoogle Scholar
  3. [3]
    K. Chudej, P. Heidebrecht, V. Petzet, S. Scherdel, K. Schittkowski, H.J. Pesch, K. Sundmacher, Index Analysis and Numerical Solution of a Large Scale Nonlinear PDAE System Describing the Dynamical Behaviour of Molten Carbonate Fuel Cells, Z. angew. Math. Mech., 85,2 (2005), 132–140.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    K. Chudej, K. Sternberg, H.J. Pesch, Simulation and Optimal Control of Molten Carbonate Fuel Cells, In: I. Troch, F. Breitenecker (Eds.), Proceedings 5th Mathmod Vienna, Argesim Report No. 30, Argesim Verlag, Wien, 2006.Google Scholar
  5. [5]
    M. Gundermann, P. Heidebrecht, K. Sundmacher, Validation of a Mathematical Model Using an Industrial MCFC Plant, Journal of Fuel Cell Science and Technology 3 (2006), 303–307.CrossRefGoogle Scholar
  6. [6]
    E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Springer, Berlin, 1996, 2nd. rev. ed.zbMATHGoogle Scholar
  7. [7]
    P. Heidebrecht, Modelling, Analysis and Optimisation of a Molten Carbonate Fuel Cell with Direct Internal Reforming (DIR-MCFC), De VDI Fortschritt Berichte, Reihe 3, Nr. 826, VDI Verlag, Düsseldorf, 2005.Google Scholar
  8. [8]
    P. Heidebrecht, K. Sundmacher, Dynamic Modeling and Simulation of a Countercurrent Molten Carbonate Fuel Cell (MCFC) with Internal Reforming, Fuel Cells 3–4 (2002), 166–180.CrossRefGoogle Scholar
  9. [9]
    P. Heidebrecht, K. Sundmacher, Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics, Chemical Engineering Science 58 (2003), 1029–1036.CrossRefGoogle Scholar
  10. [10]
    P. Heidebrecht, K. Sundmacher, Dynamic Model of a Cross-Flow Molten Carbonate Fuel Cell with Direct Internal Reforming. Journal of the Electrochemical Society, 152 (2005), A2217–A2228.CrossRefGoogle Scholar
  11. [11]
    S. Rolf, Betriebserfahrungen mit dem MTU Hot Module, In: Stationäre Brennstoffzellenanlagen, Markteinführung, VDI Berichte, Nr. 1596, VDI Verlag, Düsseldorf, 2001, 49–57.Google Scholar
  12. [12]
    W.E. Schiesser, The Numerical Method of Lines, Academic Press, New York, London, 1991.zbMATHGoogle Scholar
  13. [13]
    K. Schittkowski, NLPQL: A FORTRAN Subroutine Solving Constrained Nonlinear Programming Problems, Annals of Operations Research, 5 (1985/86), 485–500.CrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Schittkowski, PDEFIT: A FORTRAN code for parameter estimation in partial differential equations, Optimization Methods and Software, 10 (1999), 539–582.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Schittkowski, Numerical Data Fitting in Dynamical Systems-A Practical Introduction with Applications and Software, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.zbMATHGoogle Scholar
  16. [16]
    K. Schittkowski, EASY-FIT: A Software System for Data Fitting in Dynamic Systems, Structural and Multidisciplinary Optimization, 23 (2002), 153–169.CrossRefGoogle Scholar
  17. [17]
    K. Schittkowski, PCOMP: A Modeling Language for Nonlinear Programs with Automatic Differentiation, in: Modeling Languages in Mathematical Optimization, J. Kallrath ed., Kluwer Academic Publishers, 2004, 349–367.Google Scholar
  18. [18]
    K. Schittkowski, Data Fitting in Partial Differential Algebraic Equations: Some Academic and Industrial Applications, Journal of Computational and Applied Mathematics 163 (2004), 29–57.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    W. Winkler, Brennstoffzellenanlagen, Springer, Berlin, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Chudej
    • 1
  • M. Bauer
    • 1
  • H. J. Pesch
    • 1
  • K. Schittkowski
    • 2
  1. 1.Lehrstuhl für IngenieurmathematikUniversität BayreuthBayreuth
  2. 2.Fachgruppe InformatikUniversität BayreuthBayreuth

Personalised recommendations