Interactions of Fungi and Radionuclides in Soil

  • John Dighton
  • Tatyana Tugay
  • Nelli Zhdanova
Part of the Soil Biology book series (SOILBIOL, volume 13)

Following the development of nuclear weapons and the subsequent evolution of nuclear energy-generating industries, there has been considerable concern regarding the safe storage of radionuclide waste. Widescale release, in the aftermath of nuclear detonations or as the result of malfunction of atomic energy plants and reprocessing facilities, has also been a preoccupation. The International Commission on Radiological Protection recommendations on the ecological aspects of radionuclide release were discussed by Coughtree (1983), in which Heal and Horrill (1983) sum-marized element transfers within terrestrial ecosystems, highlighting the importance of organic soil horizons and their microbial communities as potential accumulators of both nutrient elements and radionuclides. This was a significant step forward from initial discussions of the impact of radionuclide fallout on ecosystems, where the involvement of fungi in regulating radionuclide movement was limited to one sentence in a paragraph describing radionuclide accumulation in organic horizons of forest soils, which may be related to fungal biomass (Osburn 1967). Now, in a more recent model of radiocesium migration in forest ecosystems, Avila and Moberg (1999) place fungal activity in the pivotal point of the diagonal of their interaction matrix, as one of the important biotic regulators of radionuclide movement in soils.


Arbuscular Mycorrhizal Fungus Fungal Community Soil Fungus Arbuscular Mycorrhizae Alternaria Alternata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiking H, Tempest DW (1977) Rubidium as a probe for function and transport of potassium in the yeast Candida utilis NCYC-321 grown in chemostat culture. Arch Microbiol 115: 215–221PubMedCrossRefGoogle Scholar
  2. Avery SV (1996) Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems J Environ Radioactiv 30:139–171CrossRefGoogle Scholar
  3. Avila R, Johanson KJ, Bergström R (1999) Model of the seasonal variations of fungi ingestion and 137Cs activity concentrations in roe deer. J Environ Radioactiv 46:99–112CrossRefGoogle Scholar
  4. Avila R, Moberg L (1999) A systematic approach to the migration of 137Cs in forest ecosystems using interaction matrices. J Environ Radioactiv 45:217–282CrossRefGoogle Scholar
  5. Baeza A, Guillén FJ, Hernández S (2002) Transfer of 134Cs and 85Sr to Pleurotus eryngii fruiting bodies under laboratory conditions: A compartmental model approach. Bull Environ Contam Toxicol 69:817–828PubMedCrossRefGoogle Scholar
  6. Barnett CL, Beresford NA, Frankland JC, Self PL, Howard BJ, Marriott JVR (2001) Radiocaesium intake in Great Britain as a consequence of the consumption of wild fungi. Mycologist 15:98–104CrossRefGoogle Scholar
  7. Berreck M, Hasselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280CrossRefGoogle Scholar
  8. Bohac JD, Krivolutskii A, Antonova TB (1989) The role of fungi in the biogenous migration of elements and in the accumulation of radionuclides. Agric Ecosyst Environ 28:31–34CrossRefGoogle Scholar
  9. Burlakova EB, Michailov VF, Mazurik VK (2001) System of an oxidation-reduction homeostasis at the instability genome induced by radiation. Rad Biol Radioecol 41:489–499Google Scholar
  10. Byrne AR (1988) Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident. J Environ Radioactiv 6:177–183CrossRefGoogle Scholar
  11. Calabrese EJ, Baldwin LA (2000). Radiation hormesis: Its historical foundations as a biological hypothesis. Hum Exper Toxicol 19:41–75CrossRefGoogle Scholar
  12. Cawse PA (1983) The accumulation of caesium-137 and plutonium-239 + 240 in soils of Great Britain, and transfer to vegetation. In: Coughtree PJ, Bell JNB, Roberts TM (eds) Ecological Aspects of Radionuclide Release. Blackwell Scientific, Oxford, pp 47–62Google Scholar
  13. Clint GM, Dighton J (1992) Uptake and accumulation of radiocaesium by mycorrhizal and non-mycorrhizal heather plants. New Phytol 122:555–561CrossRefGoogle Scholar
  14. Clint GM, Dighton J, Rees S (1991) Influx of 137Cs into hyphae of basidiomycete fungi. Mycolog Res 95:1047–1051CrossRefGoogle Scholar
  15. Connolly JH, Shortle WC, Jellison J (1998) Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Bot 77:179–187CrossRefGoogle Scholar
  16. Coughtree PJ (ed) (1983) Ecological Aspects of Radionuclide Release. Blackwell Scientific, OxfordGoogle Scholar
  17. Das J (1991) Influence of potassium in the agar medium on the growth pattern of the filamentous fungus Fusarium solani. Appl Environ Microbiol 57:3033PubMedGoogle Scholar
  18. de Boulois HD, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Poll 134:515–524CrossRefGoogle Scholar
  19. Denny HJ, Wilkins DA (1987a) Zinc tolerance in Betula spp. I. Effects of external concentration of zinc on growth and uptake. New Phytol 106:517–524Google Scholar
  20. Denny HJ, Wilkins DA (1987b) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–553Google Scholar
  21. Dighton J (2003) Fungi in Ecosystem Processes. Marcel Dekker, New YorkCrossRefGoogle Scholar
  22. Dighton J, Clint GM, Poskitt JM (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: A potential pool of Cs immobilization. Mycol Res 95:1052–1056CrossRefGoogle Scholar
  23. Dighton J, Horrill AD (1988) Radiocaesium accumulation in the mycorrhizal fungi Lactarius rufus and Inocybe longicystis, in upland Britain. Trans Brit Mycol Soc 91:335–337CrossRefGoogle Scholar
  24. Dighton J, Terry GM (1996) Uptake and immobilization of caesium in UK grassland and forest soils by fungi following the Chernobyl accident. In: Frankland JC, Magan N and Gadd GM (eds) Fungi and Environmental Change. Cambridge University Press, Cambridge, pp 184–200Google Scholar
  25. Drissner J, Bürmann W, Enslin F, Heider R, Klemt E, Miller R, Schick G, Zibold G (1998) Availability of caesium radionuclides to plants – Classification of soils and role of mycorrhiza J Environ Radioactiv 41:19–32CrossRefGoogle Scholar
  26. Durrell LW, Shields LA (1960) Fungi isolated in culture from soils of the Nevada test site. Mycologia 52:636–641CrossRefGoogle Scholar
  27. Eckl P, Hoffman W, Turk R (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat Environ Biophys 25:43–54PubMedCrossRefGoogle Scholar
  28. Elstner EF, Fink R, Holl W, Lengfelder E, Ziegler H (1987) Natural and Chernobyl-caused radioactivity in mushrooms, mosses and soil-samples of defined biotops in SW Bavaria. Oecologia 73: 553–558CrossRefGoogle Scholar
  29. Entry JA, Rygiewicz PT, Emmingham WH (1993) Accumulation of cesium-137 and strontium-90 in Ponderosa pine and Monterey pine seedlings. J Environ Qual 22:742–746Google Scholar
  30. Entry JA, Rygiewicz PT, Emmingham WH (1994) 90Sr uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ Poll 86:201–206CrossRefGoogle Scholar
  31. Fogel R, Hunt G (1983) Contribution of mycorrhiza and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219–232CrossRefGoogle Scholar
  32. Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471CrossRefGoogle Scholar
  33. Giovani C, Nimis PL, Land P, Padovani R (1990) Investigation of the performance of macromycetes as bioindicators of radioactive contamination. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 485–491Google Scholar
  34. Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26: 666–670PubMedGoogle Scholar
  35. Gray SN, Dighton J, Jennings DH (1996) The physiology of basidiomycete linear organs III. Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp. growing in microcosms and in the field. New Phytol 132:471–482CrossRefGoogle Scholar
  36. Gray SN, Dighton J, Olsson S, Jennings DH (1995) Real-time measurement of uptake and translocation of 137Cs within mycelium of Schizophyllum commune Fr. by autoradiography followed by quantitative image analysis. New Phytol 129:449–465CrossRefGoogle Scholar
  37. Grodzinsky DM (1989) Radiobiology of Plants. Nauk. Dumka Press, KievGoogle Scholar
  38. Grodzinsky DM, Shelina YuV, Meheev OM, Guscha NI (2005) Radiation hormesis retrospective review and contemporaneity. Prob Nucl Power Plant Safe Chernobyl 3:17–28Google Scholar
  39. Guillitte O, Fraiture A, Lambinon J (1990) Soil-fungi radiocaesium transfers in forest ecosystems. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, LondonGoogle Scholar
  40. Guillitte O, Gasia MC, Lambinon J, Fraiture A, Colard J, Kirchmann R (1987) La radiocontamination des champignons sauvages en Belgique et au Grand-Duché de Luxembourg après l’accident nucléaire de Tchernobyl. Mem Soc Roy Bot Belg 9: 79–93Google Scholar
  41. Guillitte O, Melin J, Wallberg L (1994) Biological pathways of radionuclides originating from the Chernoyl fallout in a boreal forest ecosystem. Sci Total Environ 157:207–215PubMedCrossRefGoogle Scholar
  42. Haselwandter K (1978) Accumulation of the radioactive nuclide 137Cs in fruitbodies of basidiomycetes. Health Phys 34:713–715PubMedGoogle Scholar
  43. Haselwandter K, Bereck M, Brunner P (1988) Fungi as bioindicators of radiocaesium contamination. Pre- and post Chernobyl activities. Trans Br Mycol Soc 90:171–176CrossRefGoogle Scholar
  44. Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G and Winge DR (eds) Metal Ions in Fungi. Marcel Dekker, New York, pp 259–277Google Scholar
  45. Heal OW, Horrill AD (1983) Terrestrial ecosystems: An ecological context for radionuclide research. In: Coughtree, PJ (ed.) Ecological Aspects of Radionuclide Release. Blackwell Scientific, Oxford, pp 31–46Google Scholar
  46. Huselton CA, Hill HZ (1990) Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells. Environ Mol Mutagen 16: 37–43PubMedCrossRefGoogle Scholar
  47. Jackson NE, Miller RH, Franklin RE (1973) The influence of vesicular-arbuscular mycorrhizae on uptake of 90Sr from soil by soybeans. Soil Biol Biochem 5:205–212CrossRefGoogle Scholar
  48. Jennings DH (1990) The ability of basidiomycete mycelium to move nutrients through the soil ecosystem. In: Harrison AF, Ineson P and Heal OW (eds) Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Applications and Interpretation. Elsevier, Amsterdam, pp 233–245Google Scholar
  49. Joner EJ, Roos P, Jansa J, Frossard E, Leyval C, Jakobsen I (2004) No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ. Microbiol 70:6512–6517PubMedCrossRefGoogle Scholar
  50. Kirchner G, Dalliant O (1998) Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Sci Total Environ 222: 63–70PubMedCrossRefGoogle Scholar
  51. Mahmoud YA-G (2004) Uptake of radionuclides by some fungi. Mycobiology 32:110–114Google Scholar
  52. Malinowska E, Szefer P, Bojanowski R (2006) Radionuclide content in Xercomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97: 19–24CrossRefGoogle Scholar
  53. Mietelski JW, Jasinska M, Kubica B, Kozak K, Macharski P (1994) Radioactive contamination of Polish mushrooms. Sci Total Environ 157:217–226CrossRefGoogle Scholar
  54. Mironenko NV, Alekhina IA, Zhdanova NN, Bulat SA (2000) Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: A case study of strains inhabiting Chernobyl Reactor No. 4. Ecotox Environ Safe 45: 177–187CrossRefGoogle Scholar
  55. Muramatsu Y, Yoshida S, Sumia M (1991) Concentrations of radiocesium and potassium in basidiomycetes collected in Japan. Sci Total Environ 105:29–39PubMedCrossRefGoogle Scholar
  56. Olsen RA, Joner E, Bakken LR (1990) Soil fungi and the fate of radiocaesium in the soil ecosystem - a discussion of possible mechanisms involved in the radiocaesium accumulation in fungi, and the role of fungi as a Cs-sink in the soil. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 657–663Google Scholar
  57. Olsson S (1995) Mycelial density profiles of fungi on heterogenous media and their interpretation in terms of nutrient reallocation patterns. Mycol Res 99:143–153CrossRefGoogle Scholar
  58. Olsson S, Jennings DH (1991) Evidence for diffusion being the mechanism of translocation in the hyphae of three moulds. Exper Mycol 15:302–309CrossRefGoogle Scholar
  59. Oolbekkink GT, Kuyper TW (1989) Radioactive caesium from Chernobyl in fungi. Mycologist 3:3–6CrossRefGoogle Scholar
  60. Osburn WS (1967) Ecological concentration of nuclear fallout in a Colorado mountain watershed. In: Aberg and Hungate (eds.) Radiological Concentration Process. Pergamon Press, New York, pp 675–709Google Scholar
  61. Oughton DH (1989) The environmental chemistry of radiocaesium and other nuclides. PhD Thesis, University of Manchester, UKGoogle Scholar
  62. Pelevina II, Aleschnko AV, Antoschina MM, Gotlib VJ, Kudriashova OV, Semenova LP, Serebryanyi AM (2003) The reaction of cell population to low level of irradiation. Rad. Biol Radioecol 43:161–166Google Scholar
  63. Petin VG, Morozov II, Kabakova NM, Gorshkova TA (2003) Some effects of radiation hormesis for bacterial and yeast cells. Rad Biol Radioecol 43:176–178Google Scholar
  64. Rafferty B, Dawson D, Kliashtorn A (1997) Decomposition in two pine forests: The mobilization of 137Cs and K from forest litter. Soil Biol Biochem 29:1673–1681CrossRefGoogle Scholar
  65. Raskin I and Ensley BD (eds) (2000) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New YorkGoogle Scholar
  66. Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71CrossRefGoogle Scholar
  67. Ritz K (1995) Growth responses of some fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol 16:269–280CrossRefGoogle Scholar
  68. Rommelt R, Hiersche L, Schaller G, Wirth E (1990) Influence of soil fungi (Basidiomycetes) on the migration of Cs134 + 137 and SR90 in coniferous forest soils. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 152–160Google Scholar
  69. Roséna K, Zhong Weiliang Z, Mårtensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Sci Total Environ 338:283–290CrossRefGoogle Scholar
  70. Rühm W, Steiner M, Kammerer L, Hiersche L, Wirth E (1998) Estimating future radiocaesium contamination of fungi on the basis of behavioural patterns derived from past instances of contamination. J Environ Radioactiv 39:129–147CrossRefGoogle Scholar
  71. Sanchez AL, Parekh NR, Dodd BA, Ineson P (2000) Microbial component of radiocaesium retention in highly organic soils. Soil Biol Biochem 32:2091–2094CrossRefGoogle Scholar
  72. Shaw G, Venter A, Avila R, Bergman R, Bulgakov A, Calmon P, Fesenko S, Frissel M, Goor F, Konoplev A, Linkov I, Mamikhin S, Moberg L, Orlov A, Rantavaara A, Spiridonov S, Thiry Y (2005) Radionuclide migration in forest ecosystems - Results of a model validation study J Environ Radioactiv 84:285–296CrossRefGoogle Scholar
  73. Singleton I, Tobin JM (1996) Fungal interactions with metals and radionuclides for environmental bioremediation. In: Frankland JC, Magan N and Gadd GM (eds.) Fungi and Environmental Change. Cambridge University Press, Cambridge, pp 282–298Google Scholar
  74. Skladany GJ, Metting F (1992) Bioremediation of contaminated soil. Soil Microb Ecol 438–513Google Scholar
  75. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, San DiegoGoogle Scholar
  76. Steinera M, Linkovb M, Yoshida S (2002) The role of fungi in the transfer and cycling of radionuclides in forest ecosystems J Environ Radioactiv 58: 217–241CrossRefGoogle Scholar
  77. Strandberg M, Johansson M (1998) 134Cs in heather seed plants grown with and without mycorrhiza. J Environ Radioactiv 40:175–184CrossRefGoogle Scholar
  78. Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824PubMedGoogle Scholar
  79. Tugay T, Zhdanova N, Zheltonozhsky V, Sadovnikov L (2006b) Influence of small dozes radiation on antioxidant activity of anamorphic fungal species Aspergillus versicolor and Paecilomyces lilacinus, having radio adaptive properties. Abstract of the 35 th Annual Meeting of the European Radiation Research Society 22–25 August, Kiev 2006, p 84Google Scholar
  80. Tugay TI (2006) Features of evince of adaptable reactions at micromycetes, isolated from radioactively polluted territories. Abstract of XII meeting of Ukrainian Botany Society, 15–18 May, Odessa, p 26Google Scholar
  81. Tugay TI, Zhdanova NN, Retchits TI, Zheltonozhsky VA, Sadovnikov LV (2003) Influence of low level ionizing irradiation on spread of radiotropism among fungi. Sci Pap Inst Nuc Res 2:72–79Google Scholar
  82. Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Dighton J (2006a) The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia 98:521–527PubMedCrossRefGoogle Scholar
  83. Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Telichko MV (2005) Response reactions of the fungi, isolated from inner locations of “Ukryttya”, which have different levels of radioactivity. Sci Pap Inst Nuc Res 1:128–136Google Scholar
  84. Tugay TI, Zheltonozhsky VA, Sadovnikov LV (2004) Response reactions of fungi under exposure of ionizing irradiation. Sci Pap Inst Nuc Res 2:132–138Google Scholar
  85. Vember VV, Zhdanova NN, Tugay TI (1999) Irradiation influence on the physiologo-biochemical properties of Cladosporium cladosporioides (Fres.) de Vries strains which differ in radiotropism sign. Microbiologichny Zhurnal 61:25–32Google Scholar
  86. Vogt KA, Grier CC, Edmonds RL, Meier CE (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis (Dougl.) Forbes ecosystems in western Washington. Ecology 63:370–380CrossRefGoogle Scholar
  87. Watling R, Laessoe T, Whalley AJS, Lepp NW (1993) Radioactive caesium in British mushrooms. Bot J Scotl 46:487–497CrossRefGoogle Scholar
  88. White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Tech Biotech 49:331–343CrossRefGoogle Scholar
  89. Witkamp M (1968) Accumulation of 137Cs by Trichoderma viride relative to 137Cs in soil organic matter and soil solution. Soil Sci 106:309–311CrossRefGoogle Scholar
  90. Witkamp M, Barzansky B (1968) Microbial immobilization of 137Cs in forest litter. Oikos 19:392–395CrossRefGoogle Scholar
  91. Yoshida S, Muramatsu Y (1994) Accumulation of radiocesium in basidiomycetes collected from Japanese forests. Sci Total Environ 157:197–205CrossRefGoogle Scholar
  92. Zhdanova NN, Lashko TN, Redchitz TI, Vasiliveskaya AI, Bosisyuk LG, Sinyavskaya OI, Gavrilyuk VI, Muzalev PN (1991) Interaction of soil micromycetes with ‘hot’ particles in a model system. Microbiologichny Zhurnal 53:9–17Google Scholar
  93. Zhdanova NN, Melezhik AV, Vasilevskaya AI, Pokhodenko VD (1978) Formation and disappearance of photo induced paramagnetic centers in melanin-containing fungi. Herald Acad Sci USSR 4:576–581Google Scholar
  94. Zhdanova NN, Redchitz TI, Krendayaskova VG, Lacshko TN, Gavriluk VI, Muzalev PI, Sherbachenko AM (1994) Tropism under the influence of ionizing radiation. Mikologia i Fitopatologiya 28:8–13Google Scholar
  95. Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P (2004) Ionizing radiation attracts fungi. Mycol Res 108:1089–1096PubMedCrossRefGoogle Scholar
  96. Zhdanova NN, Vasilevskaya AI, Artyshkova LV, Sadovnikov YuS, Gavrilyuk VI, Dighton J (1995) Changes in the micromycete communities in soil in response to pollution by long-lived radionuclides emitted in the Chernobyl accident. Mycol Res 98:789–795CrossRefGoogle Scholar
  97. Zhdanova NN, Vasilevskaya AA, Sadnovikov YuS, Artyshkova LA (1990) The dynamics of micromycete complexes contaminated with soil radionuclides. Mikologia i Fitopatologiya 24:504–512Google Scholar
  98. Zhdanova NN, Zakharchenko VA, Haselwandter K (2005b) Radionuclides and fungal communities. In: Dighton J, White JF and Oudemans P (eds) The Fungal Community: Its Organization and Role in the Ecosystem. CRC Press, Baton Rouge, pp 759–768Google Scholar
  99. Zhdanova NN, Zakharchenko VA, Tugay NI, Karpenko YV (2005a) Fungi lesion of inner locations object shelter. Prob Nuc Power Plants’ Safe Chernobyl, 3:78–86Google Scholar
  100. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426CrossRefGoogle Scholar
  101. Zvyagintsev DG (1987) Soil and Microorganisms. Moscow State University Press, MoscowGoogle Scholar
  102. Zvyagintsev DG (1999) Structure and Functioning of a Complex Soil Microorganisms/ Structurally Functional Role of Soil in Biosphere. GEOS, Moscow, pp101–112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • John Dighton
    • 1
  • Tatyana Tugay
    • 2
  • Nelli Zhdanova
    • 2
  1. 1.Rutgers University Pinelands Field StationNew Lisbon, New JerseyUSA
  2. 2.Department of Physiology and Taxonomy of MicromycetesInstitute of Microbiology and Virology, Ukrainian National Academy of SciencesKievUkraine

Personalised recommendations