Energy-Based Reconstruction of 3D Curves for Quality Control

  • H. Martinsson
  • F. Gaspard
  • A. Bartoli
  • J. -M. Lavest
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4679)

Abstract

In the area of quality control by vision, the reconstruction of 3D curves is a convenient tool to detect and quantify possible anomalies. Whereas other methods exist that allow us to describe surface elements, the contour approach will prove to be useful to reconstruct the object close to discontinuities, such as holes or edges.

We present an algorithm for the reconstruction of 3D parametric curves, based on a fixed complexity model, embedded in an iterative framework of control point insertion. The successive increase of degrees of freedom provides for a good precision while avoiding to over-parameterize the model. The curve is reconstructed by adapting the projections of a 3D NURBS snake to the observed curves in a multi-view setting. The optimization of the curve is performed with respect to the control points using an gradient-based energy minimization method, whereas the insertion procedure relies on the computation of the distance from the curve to the image edges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automated Control 19(6), 716–723 (1974)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brigger, P., Hoeg, J., Unser, M.: B-spline snakes: A flexible tool for parametric contour detection. IEEE Trans. on Image Processing 9(9), 1484–1496 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Canero, C., Radeva, P., Toledo, R., Villanueva, J.J., Mauri, J.: 3D curve reconstruction by biplane snakes. In: ICPR 2000. 15th International Conference on Pattern Recognition, vol. 4, pp. 563–566 (2000)Google Scholar
  4. 4.
    Cham, T.-J., Cipolla, R.: Stereo coupled active contours. In: Conference on Computer Vision and Pattern Recognition, pp. 1094–1099. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  5. 5.
    Cham, T.-J., Cipolla, R.: Automated B-spline curve representation incorporating MDL and error-minimizing control point insertion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1), 49–53 (1999)CrossRefGoogle Scholar
  6. 6.
    Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Inc., New York (1993)MATHGoogle Scholar
  7. 7.
    Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 932–946 (2002)CrossRefGoogle Scholar
  8. 8.
    Figueiredo, M., Leitao, J., Jain, A.K.: Unsupervised contour representation and estimation using B-splines and a minimum description length criterion. IEEE Transactions on Image Processing 9(6), 1075–1087 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. Journal of the American Statistical Association 96(454), 746–774 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kahl, F., August, J.: Multiview reconstruction of space curves. In: 9th International Conference on Computer Vision, vol. 2, pp. 1017–1024 (2003)Google Scholar
  11. 11.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 4(1), 321–331 (1987)Google Scholar
  12. 12.
    Martinsson, H., Gaspard, F., Bartoli, A., Lavest, J.-M.: Reconstruction of 3d curves for quality control. In: 15th Scandinavian Conference on Image Analysis (to appear, 2007)Google Scholar
  13. 13.
    Meegama, R.G.N., Rajapakse, J.C.: NURBS snakes. Image and Vision Computing 21, 551–562 (2003)CrossRefGoogle Scholar
  14. 14.
    Piegl, L., Tiller, W.: The NURBS book. In: Monographs in visual communication, 2nd edn., Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)MATHCrossRefGoogle Scholar
  16. 16.
    Sbert, C., Solé, A.F.: Stereo reconstruction of 3d curves. In: ICPR 2000. 15th International Conference on Pattern Recognition, vol. 1 (2000)Google Scholar
  17. 17.
    Schwarz, G.: Estimating the dimension of a model. Ann. of Stat. 6, 461–464 (1978)MATHCrossRefGoogle Scholar
  18. 18.
    Siddiqui, M., Sclaroff, S.: Surface reconstruction from multiple views using rational B-splines and knot insertion. In: First International Symposium on 3D Data Processing Visualization and Transmission, pp. 372–378 (2002)Google Scholar
  19. 19.
    Xiao, Y.J., Li, Y.F.: Stereo vision based on perspective invariance of NURBS curves. In: IEEE International Conference on Mechatronics and Machine Vision in Practice, vol. 2, pp. 51–56 (2001)Google Scholar
  20. 20.
    Yang, H., Wang, W., Sun, J.: Control point adjustment for B-spline curve approximation. Computer-Aided Design 36, 639–652 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. Martinsson
    • 1
  • F. Gaspard
    • 1
  • A. Bartoli
    • 2
  • J. -M. Lavest
    • 2
  1. 1.CEA, LIST, Boîte Courrier 94, F-91 191 Gif sur YvetteFrance
  2. 2.LASMEA (CNRS/UBP), 24 avenue des Landais, F-63 177 AubièreFrance

Personalised recommendations