Advertisement

An a Contrario Approach for Parameters Estimation of a Motion-Blurred Image

  • Feng Xue
  • Quansheng Liu
  • Jacques Froment
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4679)

Abstract

The recovery of a motion-blurred image is an important illposed inverse problem. But this subject has not recently received lot of attention. We propose a probabilistic method for the estimation of motion parameters based on the geometrical characteristic of the Fourier spectrum. Indeed, the Fourier spectrum of the blurred image is made by the product of the original Fourier spectrum with an oriented cardinal sine function. The estimation of the parameters reduces to the detection of the direction and of the gap between oscillations of the Fourier spectrum. Using the Helmholtz principle, the maximum meaningful parallel alignments are detected in the frequency domain, and then the direction and the extent of the blur are identified by an adapted K-means cluster algorithm. Simulation results show that the approach is very promising.

Keywords

Point Spread Function Fourier Spectrum Motion Blur Blind Deconvolution Degraded Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process 24 (1976)Google Scholar
  2. 2.
    Yitzhaky, Y., Kopeika, N.: Identification of blur parameters from motion blurred images. Graphical Models and Image Processing 59(5), 310–320 (1997)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Wen, C., Zhang, Y.: Estimation of motion parameters from blurred images. Pattern Recogniton Letters 21, 425–433 (2000)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Schafer, R., Mersereau, R., Richards, M.: Constrained iterative restoration algorithm. Proc. IEEE 69, 432–450 (1981)CrossRefGoogle Scholar
  5. 5.
    Lagendijk, R., Biemond, J., Mastin, G.: Systematic approach to two-dimentional blind deconvolution by zero-sheet separation. IEEE Trans. Acoust, Speech, Signal Processing 38(7) (1990)Google Scholar
  6. 6.
    Kundur, D.: Blind deconvolution of still images using recursive inverse filtering. Proceedings of the IASTED International Conference on Signal and Image Processing 59(5), 310–320 (1997)Google Scholar
  7. 7.
    Desolneux, A., Moisan, L., Morel, J.: Edge detection by helmholtz principle. Mathematical Imaging and Vision 14(3), 271–284 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Desolneux, A., Moisan, L., Morel, J.: A grouping principle and four applications. IEEE Trans. on Pattern analysis and Machine Intelligence 25(4), 508–513 (2003)CrossRefGoogle Scholar
  9. 9.
    Desolneux, A., Moisan, L., Morel, J.: Meaningful alignements. International Journal of Computer Vision 40(1), 7–23 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cao, F.: Application of the gestalt principles to the detection of good continuations and corners in image level lines. Computing and Visualisation in Science 7, 3–13 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chen, C., Luo, J., Parker, K.: Image segmentation via adaptive k-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Processing 7(12), 1673–1683 (1998)CrossRefGoogle Scholar
  12. 12.
    Cheung, Y.: k *-means: a new generalized k-means clustering algorithm. Pattern Recognition Letters 24, 2883–2893 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Feng Xue
    • 1
    • 2
  • Quansheng Liu
    • 1
    • 3
  • Jacques Froment
    • 1
  1. 1.LMAM, Université de Bretagne Sud, Campus de Tohannic - Y. Coppens, BP573, 56017 VannesFrance
  2. 2.Sense Technology Ltd, 3F, Tower D, Tian Ji Plaza Tian An Cyber Industrial Park 518040 ShenzhenP.R. China
  3. 3.School of Mathematics and Computing Science, Changsha University of Science, and Technology, Changsha, Hunan, 410076P.R. China

Personalised recommendations