Advertisement

A Boosting Discriminative Model for Moving Cast Shadow Detection

  • Yufei Zha
  • Ying Chu
  • Duyan Bi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4679)

Abstract

Moving cast shadow causes serious problem while segmenting and extracting foreground from image sequences, due to the misclassification of moving shadow as foreground. This paper proposes a boosting discriminative model for moving cast shadow detection. Firstly, color invariance subspace and texture invariance subspace are obtained by the color and texture difference between current image and background image; then, boosting is selected based on theses subspaces to discriminate cast shadow from moving objects; finally, temporal and spatial coherence of shadow and foreground is employed on Discriminative Random Fields for accurate image segmentation through graph cut. Results show that the proposed method excels classical method both in indoor and outdoor scene.

Keywords

Shadow detection boosting Discriminative Random Fields graph cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horprasert, T., Harwood, D., Davis, L.: A statistical approach for real-time robust background subtraction and shadow detection. In: Proc. of IEEE ICCV Frame-rate Workshop (1999)Google Scholar
  2. 2.
    Mikic, I., Cosman, P., Kogut, G., Trivedi, M.: Moving shadow and object detection in traffic scenes. In: Proceedings of the 15th International conference on Pattern Recognition, Barcelona, vol. 1, pp. 321–324 (2000)Google Scholar
  3. 3.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts and shadow in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1337–1342 (2003)CrossRefGoogle Scholar
  4. 4.
    Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding 95, 238–259 (2004)CrossRefGoogle Scholar
  5. 5.
    Elgammal, A., Harwood, D., Davis, L.S.: Elgammal a.background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE 90, 1151–1163 (2002)CrossRefGoogle Scholar
  6. 6.
    Stauder, J., Mech, R., Ostermann, J.: Detection of moving cast shadows for object segmentation. IEEE Transactions on Multimedia 1, 65–76 (1999)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Loe, K.F., Wu, J.K.: A dynamic conditional random field model for foreground and shadow segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 279–289 (2006)CrossRefGoogle Scholar
  8. 8.
    Nadimi, S., Bhanu, B.: Physical models for moving shadow and object detection in video. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 1079–1087 (2004)CrossRefGoogle Scholar
  9. 9.
    Porikli, F., Thornton, J.: Shadow flow: A recursive method to learn moving cast shadow. In: IEEE International Conference on Computer Vision (ICCV), Beijing (2005)Google Scholar
  10. 10.
    Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1208–1221 (2004)CrossRefGoogle Scholar
  11. 11.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min- cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)CrossRefGoogle Scholar
  12. 12.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  13. 13.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147–159 (2004)CrossRefGoogle Scholar
  14. 14.
    Klinker, G., Shafer, A., Kanada, T.: A physical approach to color image understanding. International Journal of Computer Vision 4, 7–38 (1990)CrossRefGoogle Scholar
  15. 15.
    Prati, A., Mikic, I., Trivedi, M., Cucchiara, R.: Detecting moving shadow: Algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 918–923 (2003)CrossRefGoogle Scholar
  16. 16.
    Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contextual interaction in classification. In: IEEE International Conference on Computer Vision (ICCV) (2003)Google Scholar
  17. 17.
    Schapire, R.: The boosting approach to machine learning: An overview. In. In: Proc. MSRI workshop on Nonlinear Estimation and Classification (2001)Google Scholar
  18. 18.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yufei Zha
    • 1
  • Ying Chu
    • 2
  • Duyan Bi
    • 1
  1. 1.Signal and Information Processing Lab, Engineering College of Air Force Engineering University, xi’anChina
  2. 2.Institute for Pattern Recognition and Artificial Intelligence, Huazhong University of Science and TechnologyChina

Personalised recommendations