On Secure Multi-party Computation in Black-Box Groups

  • Yvo Desmedt
  • Josef Pieprzyk
  • Ron Steinfeld
  • Huaxiong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4622)


We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i  ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element).

Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity \(O(n\frac{2t+1}{t}^2)\) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n t 2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.


Multi-Party Computation Non-Abelian Group Black-Box Planar Graph Graph Colouring 


  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience, New York (2000)MATHGoogle Scholar
  2. 2.
    Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Constant Number of Rounds of Interaction. In: Symposium on Principles Of Distributed Computing (PODC), pp. 201–209. ACM Press, New York (1989)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proc. 20-th STOC, pp. 1–10. ACM Press, New York (1988)Google Scholar
  4. 4.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC. Proceedings of the twentieth annual ACM Symp. Theory of Computing, May 2–4, 1988, pp. 11–19. ACM Press, New York (1988)Google Scholar
  5. 5.
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-Party Computation Over Rings. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: On Secure Multi-Party Computation in Black-Box Groups. Full version of this paper(2007), Available at http://www.comp.mq.edu.au/~rons/
  7. 7.
    Desmedt, Y., Wang, Y., Burmester, M.: A Complete Characterization of Tolerable Adversary Structures for Secure Point-to-Point Transmissions. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. on Information Theory 22, 644–654 (1976)MATHCrossRefGoogle Scholar
  9. 9.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Tran. Info. Theory, IT 31(4), 469–472 (1985)MATHCrossRefGoogle Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography, Volume II. Cambridge University Press, Cambridge (2004)Google Scholar
  11. 11.
    Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computation (Extended Abstract). In: Symposium on Principles Of Distributed Computing (PODC), pp. 25–34. ACM Press, New York (1997)Google Scholar
  12. 12.
    Kushilevitz, E.: Privacy and Communication Complexity. SIAM J. on Discrete Mathematics 5(2), 273–284 (1992)MATHCrossRefGoogle Scholar
  13. 13.
    Magliveras, S., Stinson, D., van Trung, T.: New approaches to Designing Public Key Cryptosystems using One-Way Functions and Trapdoors in Finite Groups. Journal of Cryptology 15, 285–297 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Noonan, J.: New Upper Bounds for the Connective Constants of Self-Avoiding Walks. Journal of Statistical Physics 91(5/6), 871–888 (1998)MATHCrossRefGoogle Scholar
  15. 15.
    Paeng, S., Ha, K., Kim, J., Chee, S., Park, C.: New Public Key Cryptosystem Using Finite Non Abelian Groups. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 470–485. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Pönitz, A., Tittmann, P.: Improved Upper Bounds for Self-Avoiding Walks in ℤd. The Electronic Journal of Combinatorics 7 (2000)Google Scholar
  17. 17.
    Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–128 (1978)MATHCrossRefGoogle Scholar
  18. 18.
    Shamir, A.: How To Share a Secret. Communications of the ACM 22, 612–613 (1979)MATHCrossRefGoogle Scholar
  19. 19.
    Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comp. 26(5), 1484–1509 (1997)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yvo Desmedt
    • 1
  • Josef Pieprzyk
    • 2
  • Ron Steinfeld
    • 2
  • Huaxiong Wang
    • 2
    • 3
  1. 1.Dept. of Computer Science, University College LondonUK
  2. 2.Centre for Advanced Computing – Algorithms and Cryptography (ACAC), Dept. of Computing, Macquarie University, North RydeAustralia
  3. 3.Division of Math. Sci., Nanyang Technological UniversitySingapore

Personalised recommendations