Advertisement

A Tight High-Order Entropic Quantum Uncertainty Relation with Applications

  • Ivan B. Damgård
  • Serge Fehr
  • Renato Renner
  • Louis Salvail
  • Christian Schaffner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4622)

Abstract

We derive a new entropic quantum uncertainty relation involving min-entropy. The relation is tight and can be applied in various quantum-cryptographic settings.

Protocols for quantum 1-out-of-2 Oblivious Transfer and quantum Bit Commitment are presented and the uncertainty relation is used to prove the security of these protocols in the bounded-quantum-storage model according to new strong security definitions.

As another application, we consider the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers. The uncertainty relation allows to prove the security of QKD protocols in this setting while tolerating considerably higher error rates compared to the standard model with unbounded adversaries. For instance, for the six-state protocol with one-way communication, a bit-flip error rate of up to 17% can be tolerated (compared to 13% in the standard model).

Our uncertainty relation also yields a lower bound on the min-entropy key uncertainty against known-plaintext attacks when quantum ciphers are composed. Previously, the key uncertainty of these ciphers was only known with respect to Shannon entropy.

Keywords

Hash Function Uncertainty Relation Quantum Channel Shannon Entropy Commitment Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Series in Discrete Mathematics and Optimization. Wiley, Chichester (2000)zbMATHGoogle Scholar
  2. 2.
    Azuma, K.: Weighted sums of certain dependent random variables. Tôhoku Mathematical Journal 19, 357–367 (1967)zbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Computer Society Press, Los Alamitos (1984)Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41, 1915–1923 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)CrossRefGoogle Scholar
  6. 6.
    Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Physical Review A 74, 52101 (2006)CrossRefGoogle Scholar
  7. 7.
    Bialynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy. Communications in Mathematical Physics 129(44) (1975)Google Scholar
  8. 8.
    Cachin, C.: Smooth entropy and Rényi entropy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: STOC. 9th Annual ACM Symposium on Theory of Computing, pp. 106–112. ACM Press, New York (1977)Google Scholar
  10. 10.
    Crépeau, C., Savvides, G., Schaffner, C., Wullschleger, J.: Information-theoretic conditions for two-party secure function evaluation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 538–554. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Transactions on Information Theory 24(3), 339–348 (1978)zbMATHCrossRefGoogle Scholar
  12. 12.
    Damgård, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order entropic quantum uncertainty relation with applications (2007), Available at http://arxiv.org/abs/quant-ph/0612014
  13. 13.
    Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: FOCS. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 449–458. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  14. 14.
    Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Oblivious transfer and linear functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Damgård, I.B., Pedersen, T.B., Salvail, L.: On the key-uncertainty of quantum ciphers and the computational security of one-way quantum transmission. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 91–108. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Deutsch, D.: Uncertainty in quantum measurements. Physical Review Letters 50(9), 631–633 (1983)CrossRefGoogle Scholar
  17. 17.
    Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Optimal eavesdropping in quantum cryptography. Physical Review A 56, 1163–1172 (1997)CrossRefGoogle Scholar
  19. 19.
    Hilgevood, J., Uffink, J.: The mathematical expression of the uncertainty principle. In: Microphysical Reality and Quantum Description, Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  20. 20.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: STOC. 21st Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM Press, New York (1989)Google Scholar
  21. 21.
    Kraus, K.: Complementary observables and uncertainty relations. Physical Review D 35(10), 3070–3075 (1987)CrossRefGoogle Scholar
  22. 22.
    Larsen, U.: Superspace geometry: the exact uncertainty relationship between complementary aspects. Journal of Physics A: Mathematical and General 23(7), 1041–1061 (1990)zbMATHCrossRefGoogle Scholar
  23. 23.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Physical Review A 61, 52304 (2000)CrossRefGoogle Scholar
  24. 24.
    Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Physical Review Letters 60(12), 1103–1106 (1988)CrossRefGoogle Scholar
  25. 25.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich (2005), http://arxiv.org/abs/quant-ph/0512258
  26. 26.
    Renner, R., Gisin, N., Kraus, B.: An information-theoretic security proof for QKD protocols. Phys. Rev. A. 72(012332) (2005)Google Scholar
  27. 27.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Sánchez-Ruiz, J.: Entropic uncertainty and certainty relations for complementary observables. Physics Letters A 173(3), 233–239 (1993)CrossRefGoogle Scholar
  30. 30.
    Sánchez-Ruiz, J.: Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Physics Letters A 201(2–3), 125–131 (1995)zbMATHCrossRefGoogle Scholar
  31. 31.
    Wegman, M.N., Carter, J.L.: New classes and applications of hash functions. In: FOCS. 20th Annual IEEE Symposium on Foundations of Computer Science, pp. 175–182. IEEE Computer Society Press, Los Alamitos (1979)Google Scholar
  32. 32.
    Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1970)CrossRefGoogle Scholar
  33. 33.
    Wullschleger, J.: Oblivious-Transfer amplification. In: Advances in Cryptology—EUROCRYPT ’07. LNCS, Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ivan B. Damgård
    • 1
  • Serge Fehr
    • 2
  • Renato Renner
    • 3
  • Louis Salvail
    • 1
  • Christian Schaffner
    • 2
  1. 1.Basic Research in Computer Science (BRICS), funded by the Danish National Research Foundation, Department of Computer Science, University of AarhusDenmark
  2. 2.Center for Mathematics and Computer Science (CWI), AmsterdamNetherlands
  3. 3.Cambridge UniversityUK

Personalised recommendations