Advertisement

Practical Cryptanalysis of SFLASH

  • Vivien Dubois
  • Pierre-Alain Fouque
  • Adi Shamir
  • Jacques Stern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4622)

Abstract

In this paper, we present a practical attack on the signature scheme SFLASH proposed by Patarin, Goubin and Courtois in 2001 following a design they had introduced in 1998. The attack only needs the public key and requires about one second to forge a signature for any message, after a one-time computation of several minutes. It can be applied to both SFLASHv2 which was accepted by NESSIE, as well as to SFLASHv3 which is a higher security version.

Keywords

Smart Card Signature Scheme Symmetric Bilinear Form Multiplicative Property Linear Bijection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dubois, V., Fouque, P.A., Stern, J.: Cryptanalysis of SFLASH with Slightly Modified Parameters. In: Eurocrypt ’07. LNCS, vol. 4515, pp. 264–275. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT–31(4), 469–472 (1985)Google Scholar
  3. 3.
    Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Fouque, P.A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, New-York (1979)zbMATHGoogle Scholar
  6. 6.
    Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 288–298. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Matsumoto, T., Imai, H.: Public Quadratic Polynomial-tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)Google Scholar
  8. 8.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Patarin, J.: Hidden field equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Patarin, J., Courtois, N., Goubin, L.: FLASH, a Fast Multivariate Signature Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 297–307. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Patarin, J., Goubin, L., Courtois, N.: C*_-+ and HM : Variations Around Two Sechemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystem. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefGoogle Scholar
  13. 13.
    Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vivien Dubois
    • 1
  • Pierre-Alain Fouque
    • 1
  • Adi Shamir
    • 1
    • 2
  • Jacques Stern
    • 1
  1. 1.École normale supérieure, Département d’Informatique 45, rue d’Ulm, 75230 Paris cedex 05France
  2. 2.Weizmann Institute of Science 

Personalised recommendations