Enhancing Case-Based, Collaborative Web Search

  • Oisín Boydell
  • Barry Smyth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4626)


This paper describes and evaluates a case-based approach to personalizing Web search by post-processing the results returned by a Web search engine to reflect the interests of a community of like-minded searchers. The search experiences of a community of users are captured as a case base of textual cases, which serves as a way to bias future search results in line with community interests.


Query Term Result Page Similar Query Search Session Target Page 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balfe, E., Smyth, B.: Case-based collaborative web search. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 489–503. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bollmann-Sdorra, P., Raghavan, V.V.: On the Delusiveness of Adopting a Common Space for Modeling IR Objects: Are Queries Documents? Journal of the American Society for Information Science and Technology 44(10), 579–587 (1993)CrossRefGoogle Scholar
  3. 3.
    Budzik, J., Hammond, K.: User Interactions with Everyday Applications as Context for Just-In-Time Information Access. In: Proceedings International Conference on Intelligent User Interfaces, pp. 44–51. ACM Press, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Burke, R., Hammond, K., Kulyukin, V., Tomuro, S., Schoenberg, S.: Question Answering from Frequently-Asked Question Files: Experiences with the FAQ Finder System. AI Magazine 18(2), 57–66 (1997)Google Scholar
  5. 5.
    Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332. ACM Press, New York (2002)Google Scholar
  6. 6.
    Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Probabilistic Query Expansion Using Query Logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332 (2002)Google Scholar
  7. 7.
    Dreilinger, D., Howe, A.E.: Experiences with selecting search engines using metasearch. ACM Transactions on Information Systems 15(3), 195–222 (1997)CrossRefGoogle Scholar
  8. 8.
    Glover, E., Lawrence, S., Gordon, M.D., Birmingham, W.P., Giles, C.L.: Web Search - Your Way. Communications of the ACM 44(12), 97–102 (2001)CrossRefGoogle Scholar
  9. 9.
    Godoy, D., Amandi, A.: PersonalSearcher: An Intelligent Agent for Searching Web Pages. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 62–72. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Kanawati, R., Jaczynski, M., Trousse, B., J-M, A.: Applying the Broadway Recommendation Computation Approach for Implementing a Query Refinement Service in the CBKB Meta-search Engine. In: Conférence Française sur le Raisonnement á Partir de Cas (RáPC 1999) (1999)Google Scholar
  11. 11.
    Kemp, C., Ramamohanarao, K.: Long-term learning for web search engines. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Lawrence, S., Giles, C.L.: Context and Page Analysis for Improved Web Search. IEEE Internet Computing, 38–46 (July-August 1998)Google Scholar
  13. 13.
    Lenz, M., Ashley, K.: AAAI Workshop on Textual Case-Based Reasoning, AAAI Technical Report WS-98-12 (1999)Google Scholar
  14. 14.
    Lieberman, H.: Letizia: An agent that assists web browsing. In: Mellish, C. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 1995, pp. 924–929. Morgan Kaufman Publishers, Montreal, Canada (1995)Google Scholar
  15. 15.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of Research and Development 2, 159–165 (1958)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rhodes, B.J., Starner, T.: Remembrance Agent: A Continuously Running Automated Information Retrieval System. In: Proceedings of the 1st International Conference on the Practical Applications of Intelligent Agents and Multi-Agent Technologies, pp. 487–495 (1996)Google Scholar
  17. 17.
    Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Dept. of Computer Science, University of Glasgow (1979)Google Scholar
  18. 18.
    Rissland, E.L., Daniels, J.J.: A hybrid CBR-IR Approach to Legal Information Retrieval. In: Proceedings of the 5th international conference on Artificial intelligence and law, pp. 52–61. ACM Press, New York (1995)Google Scholar
  19. 19.
    Sakai, T., Sparck-Jones, K.: Generic summaries for indexing in information retrieval. In: SIGIR 2001: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 190–198. ACM Press, New York, USA (2001)CrossRefGoogle Scholar
  20. 20.
    Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A Live-user Evaluation of Collaborative Web Search. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1419–1424. Morgan Kaufmann, Ediburgh, Scotland (2005)Google Scholar
  21. 21.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query repetition and regularity in an adaptive community-based web search engine. User Modeling and User-Adapted Interaction 14(5), 383–423 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Oisín Boydell
    • 1
  • Barry Smyth
    • 1
  1. 1.Adaptive Information Cluster, School of Computer Science and Informatics, University College Dublin, Dublin 4Ireland

Personalised recommendations