Application of the Revision Theory to Adaptation in Case-Based Reasoning: The Conservative Adaptation

  • Jean Lieber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4626)


Case-based reasoning aims at solving a problem by the adaptation of the solution of an already solved problem that has been retrieved in a case base. This paper defines an approach to adaptation called conservative adaptation; it consists in keeping as much as possible from the solution to be adapted, while being consistent with the domain knowledge. This idea can be related to the theory of revision: the revision of an old knowledge base by a new one consists in making a minimal change on the former, while being consistent with the latter. This leads to a formalization of conservative adaptation based on a revision operator in propositional logic. Then, this theory of conservative adaptation is confronted to an application of case-based decision support to oncology: a problem of this application is the description of a patient ill with breast cancer, and a solution, the therapeutic recommendation for this patient. Examples of adaptations that have actually been performed by experts and that can be captured by conservative adaptation are presented. These examples show a way of adapting contraindicated treatment recommendations and treatment recommendations that cannot be applied.


case-based reasoning knowledge-intensive case-based reasoning adaptation conservative adaptation theory of revision logical representation of cases application to oncology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates, Hillsdale, New Jersey (1989)Google Scholar
  2. 2.
    Aamodt, A.: Knowledge-Intensive Case-Based Reasoning and Sustained Learning. In: Aiello, L.C. (ed.) ECAI 1990. Proceedings of the 9th European Conference on Artificial Intelligence, August 1990 (1990)Google Scholar
  3. 3.
    Dubois, D., Esteva, F., Garcia, P., Godo, L., López de Màntaras, R., Prade, H.: Fuzzy set modelling in case-based reasoning. Int. J. of Intelligent Systems 13, 345–373 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    d’Aquin, M., Lieber, J., Napoli, A.: Adaptation Knowledge Acquisition: a Case Study for Case-Based Decision Support in Oncology. Computational Intelligence (an International Journal) 22(3/4), 161–176 (2006)MathSciNetGoogle Scholar
  5. 5.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: partial meet functions for contraction and revision. Journal of Symbolic Logic 50, 510–530 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: AAAI, pp. 475–479 (1988)Google Scholar
  8. 8.
    McCarthy, J.: Epistemological Problems of Artificial Intelligence. In: IJCAI 1977. Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge (Massachussetts), pp. 1038–1044 (1977)Google Scholar
  9. 9.
    Maximini, K., Maximini, R., Bergmann, R.: An investigation of generalized cases. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 261–275. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Fensel, D., Hendler, J., Lieberman, H., Wahlster, W. (eds.): Spinning the Semantic Web. The MIT Press, Cambridge, Massachusetts (2003)Google Scholar
  11. 11.
    Staab, S., Studer, R. (eds.): Handbook on Ontologies. Springer, Berlin (2004)Google Scholar
  12. 12.
    d’Aquin, M., Lieber, J., Napoli, A.: Case-Based Reasoning within Semantic Web Technologies. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI), vol. 4183, pp. 190–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Mining for Adaptation Knowledge Acquisition. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 750–755. Morgan Kaufmann, San Francisco (2007)Google Scholar
  14. 14.
    Lieber, J.: A Definition and a Formalization of Conservative Adaptation for Knowledge-Intensive Case-Based Reasoning – Application to Decision Support in Oncology (A Preliminary Report). Research report, LORIA (2006)Google Scholar
  15. 15.
    Bergmann, R.: Learning Plan Abstractions. In: Ohlbach, H.J. (ed.) GWAI-1992: Advances in Artificial Intelligence. LNCS (LNAI), vol. 671, pp. 187–198. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Hanney, K., Keane, M.T., Smyth, B., Cunningham, P.: Systems, Tasks and Adaptation Knowledge: Revealing Some Revealing Dependencies. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 461–470. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Fuchs, B., Mille, A.: A Knowledge-Level Task Model of Adaptation in Case-Based Reasoning. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR-1999. LNCS (LNAI), vol. 1650, pp. 118–131. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  19. 19.
    Pavón Rial, R., Laza Fidalgo, R., Gómez Rodriguez, A., Corchado Rodriguez, J.M.: Improving the Revision Stage of a CBR System with Belief Revision Techniques. Computing and information systems journal 8(2), 40–45 (2001)Google Scholar
  20. 20.
    Katsuno, H., Mendelzon, A.: On the Difference Between Updating a Knowledge Base and Revising. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) KR 1991: Principles of Knowledge Representation and Reasoning, pp. 387–394. Morgan Kaufmann, San Mateo, California (1991)Google Scholar
  21. 21.
    Cordier, A., Fuchs, B., Lieber, J., Mille, A.: Failure Analysis for Domain Knowledge Acquisition in a Knowledge-Intensive CBR System. In: ICCBR. LNCS, vol. 4626, pp. 463–477, Springer, Heidelberg (to appear)Google Scholar
  22. 22.
    Hammond, K.J.: Case-Based Planning: A Framework for Planning from Experience. Cognitive Science 14(3), 385–443 (1990)CrossRefGoogle Scholar
  23. 23.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lieber, J.: Reformulations and Adaptation Decomposition. In: Lieber, J., Melis, E., Mille, A., Napoli, A. (eds.) Formalisation of Adaptation in Case-Based Reasoning, Third International Conference on Case-Based Reasoning Workshop, ICCBR-1999 Workshop, (S. Schmitt and I. Vollrath (volume editor)), vol. (3), University of Kaiserslautern, LSA (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jean Lieber
    • 1
  1. 1.LORIA (UMR 7503 CNRS–INRIA–Nancy Universities), BP 239, 54506 Vandœuvre-lès-NancyFrance

Personalised recommendations