Composing Globally Consistent Pathway Parameter Estimates Through Belief Propagation

  • Geoffrey Koh
  • Lisa Tucker-Kellogg
  • David Hsu
  • P. S. Thiagarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4645)

Abstract

Parameter estimation of large bio-pathway models is an important and difficult problem. To reduce the prohibitive computational cost, one approach is to decompose a large model into components and estimate their parameters separately. However, the decomposed components often share common parts that may have conflicting parameter estimates, as they are computed independently within each component. In this paper, we propose to use a probabilistic inference technique called belief propagation to reconcile these independent estimates in a principled manner and compute new estimates that are globally consistent and fit well with data. An important advantage of our approach in practice is that it naturally handles incomplete or noisy data. Preliminary results based on synthetic data show promising performance in terms of both accuracy and efficiency.

References

  1. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. International J. of Comp. Vision 70(1), 41–54 (2006)CrossRefGoogle Scholar
  2. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)CrossRefGoogle Scholar
  3. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1982)Google Scholar
  4. Gat-Viks, I., Tanay, A., Raijman, D., Shamir, R.: The factor graph network model for biological systems. In: Proc. of the 9th Int. Conf. on Res. in Comp. Mol. Biol., pp. 31–48 (2005)Google Scholar
  5. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI - a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  6. Ihler, A.T., Fisher, J.W., Moses, R.L., Willsky, A.S.: Nonparametric belief propagation for self-calibration in sensor networks. In: Proc. of the 2004 Int. Conf. on Inf. Proc. in Sensor Networks, pp. 225–233 (2004)Google Scholar
  7. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19(5), 643–650 (2003)CrossRefGoogle Scholar
  8. Koh, G., Teong, H.F.C., Clement, M.V., Hsu, D., Thiagarajan, P.S.: A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics 22(14), e271–e280 (2006)Google Scholar
  9. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. on Information Th. 47(2), 498–519 (2001)Google Scholar
  10. Mendes, P., Kell, D.B.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)Google Scholar
  11. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Research 13, 2467–2474 (2003)Google Scholar
  12. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proc. of the 15th Ann. Conf. on Uncertainty in AI, pp. 467–475 (1999)Google Scholar
  13. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference, 2nd edn. Morgan Kaufmann Publishers, Inc., San Francisco (1988)Google Scholar
  14. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Trans. on Information Th. 47(2), 736–744 (2001)Google Scholar
  15. Yeang, C.H., Jaakkola, T.: Physical network models and multi-source data integration. In: Proc. of the 7th Int. Conf. on Res. in Comp. Mol. Biol. pp. 312–321 (2003)Google Scholar
  16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Exploring Artificial Intelligence in the new Millenium, pp. 239–269 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Geoffrey Koh
    • 1
  • Lisa Tucker-Kellogg
    • 2
  • David Hsu
    • 1
    • 2
  • P. S. Thiagarajan
    • 1
    • 2
  1. 1.Graduate School for Integrative Sciences and Engineering, National University ofSingapore
  2. 2.Department of Computer Science, National University ofSingapore

Personalised recommendations