Using Protein Domains to Improve the Accuracy of Ab Initio Gene Finding

  • Mihaela Pertea
  • Steven L. Salzberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4645)

Abstract

Background: Protein domains are the common functional elements used by nature to generate tremendous diversity among proteins, and they are used repeatedly in different combinations across all major domains of life. In this paper we address the problem of using similarity to known protein domains in helping with the identification of genes in a DNA sequence. We have adapted the generalized hidden Markov model (GHMM) architecture of the ab intio gene finder GlimmerHMM such that a higher probability is assigned to exons that contain homologues to protein domains. To our knowledge, this domain homology based approach has not been used previously in the context of ab initio gene prediction. Results: GlimmerHMM was augmented with a protein domain module that recognizes gene structures that are similar to Pfam models. The augmented system, GlimmerHMM+, shows 2% improvement in sensitivity and a 1% increase in specificity in predicting exact gene structures compared to GlimmerHMM without this option. These results were obtained on two very different model organisms: Arabidopsis thaliana (mustard wee) and Danio rerio (zebrafish), and together these preliminary results demonstrate the value of using protein domain homology in gene prediction. The results obtained are encouraging, and we believe that a more comprehensive approach including a model that reflects the statistical characteristics of specific sets of protein domain families would result in a greater increase of the accuracy of gene prediction. GlimmerHMM and GlimmerHMM+ are freely available as open source software at http://cbcb.umd.edu/software.

Keywords

Pfam protein domain profile HMM GHMM ab intio gene finding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.E., Majoros, W.H., Pertea, M., Salzberg, S.L.: JIGSAW,GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol. 7(suppl 1:S9), 1–13 (2006)Google Scholar
  2. 2.
    Ashurst, J.L., Chen, C.K., Gilbert, J.G., Jekosch, K., Keenan, S., Meidl, P., Searle, S.M., Stalker, J., Storey, R., Trevanion, S., Wilming, L., Hubbard, T.: The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res. 33(Database issue), D459–D465 (2005)Google Scholar
  3. 3.
    Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)CrossRefGoogle Scholar
  4. 4.
    Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L., Bateman, A.: Pfam: clans, web tools and services. Nucleic Acids Res. 34(Database issue), D247–D251 (2006)Google Scholar
  5. 5.
    Guigo, R., Flicek, P., Abril, J.F., Reymond, A., Lagarde, J., Denoeud, F., Antonarakis, S., Ashburner, M., Bajic, V.B., Birney, E., Castelo, R., Eyras, E., Ucla, C., Gingeras, T.R., Harrow, J., Hubbard, T., Lewis, S.E., Reese, M.G.: EGASP: the human ENCODE Genome Annotation Assessment Project. Genome Biol. 7(Suppl 1:S2), 1–31 (2006)Google Scholar
  6. 6.
    Haas, B.J., Volfovsky, N., Town, C.D., Troukhan, M., Alexandrov, N., Feldmann, K.A., Flavell, R.B., White, O., Salzberg, S.L.: Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3(6), RESEARCH0029 (2002)Google Scholar
  7. 7.
    Krogh, A.: Using database matches with for HMMGene for automated gene detection in Drosophila. Genome Res. 10(4), 523–528 (2000)CrossRefGoogle Scholar
  8. 8.
    Majoros, W.H., Pertea, M., Salzberg, S.L.: TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20(16), 2878–2879 (2004)CrossRefGoogle Scholar
  9. 9.
    Ponting, C.P., Russell, R.R.: The natural history of protein domains. Annu. Rev. Biophys. Biomol. Struct. 31, 45–71 (2002)CrossRefGoogle Scholar
  10. 10.
    Reese, M.G., Kulp, D., Tammana, H., Haussler, D.: Genie–gene finding in Drosophila melanogaster. Genome Res. 10(4), 529–538 (2000)CrossRefGoogle Scholar
  11. 11.
    Solovyev, V., Kosarev, P., Seledsov, I., Vorobyev, D.: Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7(Suppl 1:S10), 1–12 (2006)Google Scholar
  12. 12.
    Wei, C., Brent, M.R.: Using ESTs to improve the accuracy of de novo gene prediction. BMC Bioinformatics 7, 327 (2006)CrossRefGoogle Scholar
  13. 13.
    Zhang, M.Q.: Computational prediction of eukaryotic protein-coding genes. Nat. Rev. Genet. 3(9), 698–709 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mihaela Pertea
    • 1
  • Steven L. Salzberg
    • 1
  1. 1.Center for Bioinformatics and Computational Biology, University of Maryland, College Park MDUSA

Personalised recommendations