Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion

(Extended Abstract)
  • Hadas Birin
  • Zohar Gal-Or
  • Isaac Elias
  • Tamir Tuller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4645)


The evolution of viruses is very rapid and in addition to local point mutations (insertion, deletion, substitution) it also includes frequent recombinations, genome rearrangements, and horizontal transfer of genetic material. Evolutionary analysis of viral sequences is therefore a complicated matter for two main reasons: First, due to HGTs and recombinations, the right model of evolution is a network and not a tree. Second, due to genome rearrangements, an alignment of the input sequences is not guaranteed. Since contemporary methods for inferring phylogenetic networks require aligned sequences as input, they cannot deal with viral evolution. In this work we present the first computational approach which deals with both genome rearrangements and horizontal gene transfers and does not require a multiple alignment as input. We formalize a new set of computational problems which involve analyzing such complex models of evolution, investigate their computational complexity, and devise algorithms for solving them. Moreover, we demonstrate the viability of our methods on several synthetic datasets as well as biological datasets.


Phylogenetic network horizontal gene transfer genome rearrangements recombinations minimum evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addario-Berry, L., Hallett, M., Lagergren, J.: Towards identifying lateral gene transfer events. In: PSB 2003, pp. 279–290 (2003)Google Scholar
  2. 2.
    Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Beep software package (2006)Google Scholar
  3. 3.
    Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)CrossRefGoogle Scholar
  4. 4.
    Boc, A., Makarenkov, V.: New efficient algorithm for detection of horizontal gene transfer events. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 190–201. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and checking. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 55–69. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Delwiche, C., Palmer, J.: Rampant horizontal transfer and duplicaion of rubisco genes in eubacteria and plastids. Mol. Biol. Evol 13(6) (1996)Google Scholar
  7. 7.
    Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comp. Biol. 9(5), 687–705 (2002)CrossRefGoogle Scholar
  8. 8.
    Doolittle, W.F., Boucher, Y., Nesbo, C.L., Douady, C.J., Andersson, J.O., Roger, A.J.: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 358, 39–57 (2003)CrossRefGoogle Scholar
  9. 9.
    Elias, I.: Settling the intractability of multiple alignment. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 352–363. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Gascuel, O.: Concerning the NJ algorithm and its unweighted version UNJ (1997)Google Scholar
  11. 11.
    Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405 (1993)CrossRefGoogle Scholar
  13. 13.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol 23(2), 254–267 (2006)CrossRefGoogle Scholar
  14. 14.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)CrossRefGoogle Scholar
  15. 15.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23(2), 123–128 (2007)CrossRefGoogle Scholar
  16. 16.
    Judd, W.S., Olmstead, R.G.: A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany 91, 1627–1644 (2004)CrossRefGoogle Scholar
  17. 17.
    Kalinina, O., Norder, H., Magnius, L.O.: Full-length open reading frame of a recombinant hepatitis c virus strain from St Petersburg: proposed mechanism for its formation. J. Gen. Virol. 85, 1853–1857 (2004)CrossRefGoogle Scholar
  18. 18.
    Kidd, K.K., Sgaramella-Zonta, L.A.: Phylogenetic analysis: concepts and methods. Am. J. Hum. Genet. 23(3), 235–252 (1971)Google Scholar
  19. 19.
    Kuiken, C., Yusim, K., Boykin, L., Richardson, R.: The los alamos hcv sequence database. Bioinformatics 21(3), 379–384 (2005)CrossRefGoogle Scholar
  20. 20.
    Michelangeli, F.A., Davis, J.I., Stevenson, D.W.: Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from mitochondrial and plastid genomes. American Journal of Botany 90, 93–106 (2003)CrossRefGoogle Scholar
  21. 21.
    Rzhetsky, A., Nei, M.: Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10, 1073–1095 (1993)Google Scholar
  22. 22.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)Google Scholar
  23. 23.
    Sinkovics, J., Horvath, J., Horak, A.: The origin and evolution of viruses (a review). Acta Microbiol Immunol Hung. 45(3-4), 349–390 (1998)Google Scholar
  24. 24.
    Stoye, J., Evers, D., Meyer, F.: Rose: generating sequence families. Bioinformatics 14, 157–163 (1998)CrossRefGoogle Scholar
  25. 25.
    Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)Google Scholar
  26. 26.
    Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring approach to phylogenomic reconstruction. J. Comp. Biol. 13(2), 336–350 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hadas Birin
    • 1
  • Zohar Gal-Or
    • 1
  • Isaac Elias
    • 2
  • Tamir Tuller
    • 1
  1. 1.School of Computer Science, Tel Aviv University 
  2. 2.School of Computer Science and Communication, KTH 

Personalised recommendations