Advertisement

Noisy Timing Channels with Binary Inputs and Outputs

  • Keye Martin
  • Ira S. Moskowitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4437)

Abstract

We develop the algebraic theory of timed capacity for channels with binary inputs and outputs in the presence of noise, by obtaining a formula for capacity in terms of the unique solution of a nonlinear algebraic equation. We give provably correct numerical algorithms for solving this equation, specifically tailored toward calculating capacity. We use our results to establish that information theory has an inherent discontinuity in it: the function which assigns the unique capacity achieving distribution to the noise matrix of a binary channel has no continuous extension to the set of all noise matrices. Our results provide new formulae in the case of untimed binary channels as well. Our results are important in the study of real-world systems, such as the NRL Network Pump® system and traffic analysis in anonymity systems.

Keywords

Mutual Information Channel Matrix Timing Channel Covert Channel Exponential Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, R.B.: Information Theory. Dover (1965)Google Scholar
  2. 2.
    Golomb, S.: The limiting behavior of the Z-channel. IEEE Transactions on Information theory 26, 372 (1980)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jones, G.A., Jones, J.M.: Information and Coding Theory. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Kang, M.H., Moskowitz, I.S.: A Pump for Rapid, Reliable, Secure Communication. In: 1st ACM Conference on Computer and Communications Security. ACM Press, New York (1994)Google Scholar
  5. 5.
    Kang, M.H., Moskowitz, I.S., Lee, D.C.: A Network Pump. IEEE Transactions on Software Engineering 22(5), 329–338 (1996)CrossRefGoogle Scholar
  6. 6.
    Lampson, B.W.: A note on the confinement problem. Communications of the ACM 16(10), 613–615 (1973)CrossRefGoogle Scholar
  7. 7.
    Majani, E.E., Rumsey, H.: Two results on binary input discrete memoryless channels. In: IEEE International Symposium on Information Theory, p. 104 (June 1991)Google Scholar
  8. 8.
    Martin, K.: NRL memorandum report: 5540–06-8945 (March 24, 2006)Google Scholar
  9. 9.
    Martin, K.: The simulation of covert timing channels, 2006 (preprint)Google Scholar
  10. 10.
    Martin, K., Moskowitz, I.S., Allwein, G.: Algebraic information theory for binary channels. In: Proc. 22nd Conference on the Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science (2006)Google Scholar
  11. 11.
    Moeller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol version 2. Internet-Draft (2003), http://www.abditum.com/mixmaster-spec.txt
  12. 12.
    Moskowitz, I.S., Greenwald, S., Kang, M.H.: An analysis of the timed Z-channel. IEEE Transactions on Information Theory 44(7), 3162–3168 (1998)zbMATHCrossRefGoogle Scholar
  13. 13.
    Moskowitz, I.S., Kang, M.H.: Discussion of a statistical channel. In: Proceedings 1994 IEEE-IMS Workshop on Information Theory and Statistics, Alexandria, VA, USA, p. 95. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  14. 14.
    Moskowitz, I.S., Miller, A.R.: Simple timing channels. In: IEEE Computer Society Symposium on Research in Security and Privacy, pp. 56–64, Oakland, CA, (May 16-18, 1994)Google Scholar
  15. 15.
    Moskowitz, I.S., Newman, R.E.: Timing channels, anonymity, mixes, and spikes. In: Proc. Int. Conf. on Advances in Computer Science and Technology—ACST 2006 Puerto Vallerta, Mexico, IASTED (2006)Google Scholar
  16. 16.
    Moskowitz, I.S., Newman, R.E., Crepeau, D.P., Miller, A.R.: Covert channels and anonymizing networks. In: ACM WPES, pp. 79–88, Washington (October 2003)Google Scholar
  17. 17.
    Moskowitz, I.S., Newman, R.E., Crepeau, D.P., Miller, A.R.: A detailed mathematical analysis of a class of covert channels arising in certain anonymizing networks. Memorandum Report NRL/MRL/5540–03-8691, NRL (August 2003)Google Scholar
  18. 18.
    Ogurtsov, N., Orman, H., Schroeppel, R., O’Malley, S., Spatscheck, O.: Experimental results of covert channel limitation in one-way communication systems. In: Proc. IEEE 1997 Symposium on Network and Distributed System Security, pp. 2–15. IEEE, New York (1997)CrossRefGoogle Scholar
  19. 19.
    Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: Active attacks on several mix types. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 36–52. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  21. 21.
    Silverman, R.A.: On binary channels and their cascades. IRE Transactions on Information Theory 1(3), 19–27 (1955)CrossRefGoogle Scholar
  22. 22.
    Tallini, L.G., Al-Bassam, S., Bose, B.: On the capacity and codes for the Z-channel. In: Proc. ISIT 2002, pp. 422 (2002)Google Scholar
  23. 23.
    Verdú, S.: On channel capacity per unit cost. IEEE Transactions on Information Theory 36(5), 1019–1030 (1992)CrossRefGoogle Scholar
  24. 24.
    Verdú, S.: Channel Capacity, Chapter 73.5. The Electrical Engineering Handbook, CRC Press (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Keye Martin
    • 1
  • Ira S. Moskowitz
    • 1
  1. 1.Center for High Assurance Computer Systems, Code 5540, Naval Research Laboratory, Washington, DC 20375 

Personalised recommendations