On Steganographic Embedding Efficiency

  • Jessica Fridrich
  • Petr Lisoněk
  • David Soukal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4437)

Abstract

In this paper, we study embedding efficiency, which is an important attribute of steganographic schemes directly influencing their security. It is defined as the expected number of embedded random message bits per one embedding change. Constraining ourselves to embedding realized using linear covering codes (so called matrix embedding), we show that the quantity that determines embedding efficiency is not the covering radius but the average distance to code. We demonstrate that for linear codes of fixed block length and dimension, the highest embedding efficiency (the smallest average distance to code) is not necessarily achieved using codes with the smallest covering radius. Nevertheless, we prove that with increasing code length and fixed rate (i.e., fixed relative message length), the relative average distance to code and the relative covering radius coincide. Finally, we describe several specific examples of q-ary linear codes with q matched to the embedding operation and experimentally demonstrate the improvement in steganographic security when incorporating the coding methods to digital image steganography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simmons, G.J: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) Advances in Cryptology, pp. 51–67. Plenum Press, New York (1984)Google Scholar
  2. 2.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Westfeld, A.: High capacity despite better steganalysis F5—a steganographic algorithm. In: Moskowitz, I.S. (ed.) Information Hiding. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Sallee, P.: Model-based methods for steganography and steganalysis. International Journal of Image Graphics 5, 167–190 (2005)CrossRefGoogle Scholar
  5. 5.
    Fridrich, J., Goljan, M., Soukal, D.: Steganography via codes for memory with defective cells. In: 43rd Conference on Coding, Communication, and Control, September 28–30 (2005)Google Scholar
  6. 6.
    Crandall, R.: Some notes on steganography. Steganography Mailing List (1998), available from http://os.inf.tu-dresden.de/~westfeld/crandall.pdf
  7. 7.
    Bierbrauer, J.: Introduction to Coding Theory. Chapman & Hall/CRC (2004)Google Scholar
  8. 8.
    van Dijk, M., Willems, F.: Embedding information in grayscale images. In: Proceedings of the 22nd Symposium on Information and Communication Theory in the Benelux, Enschede, The Netherlands, (May 15–16, 2001), pp. 147–154 (2001)Google Scholar
  9. 9.
    Galand, F., Kabatiansky, G.: Information hiding by coverings. In: Proceedings ITW 2003, Paris, France, pp. 151–154 (2003)Google Scholar
  10. 10.
    Fridrich, J., Goljan, M., Soukal, D.: Wet paper codes with improved embedding efficiency. IEEE Transactions on Information Security and Forensics 1, 102–110 (2006)CrossRefGoogle Scholar
  11. 11.
    Williams, F.J.M., Sloane, N.J.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)Google Scholar
  12. 12.
    Bierbrauer, J.: On crandall’s problem. Personal Communication (1998), available from http://www.ws.binghamton.edu/fridrich/covcodes.pdf
  13. 13.
    Fridrich, J., Soukal, D.: Matrix embedding for large payloads. In: Delp, E., Wong, P.W. (eds.) Proceedings SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, 2006, pp. W1–W15 (2006)Google Scholar
  14. 14.
    Cohen, G.D., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. Elsevier, North-Holland Mathematical Library, vol. 54 (1997)Google Scholar
  15. 15.
    Khatirinejad, M., Lisoněk, P.: Linear codes for high payload steganography. In: AAECC-16, Las Vegas, Nevada (February 20–24, 2006)Google Scholar
  16. 16.
    Ker, A.: A general framework for structural analysis of LSB replacement. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 296–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Soukal, D., Fridrich, J., Goljan, M.: Maximum likelihood estimation of secret message length embedded using PMK steganography in spatial domain. In: Delp, E., Wong, P.W. (eds.) Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, CA, January 16–20, 2005, vol. 5681, pp. 595–606 (2005)Google Scholar
  18. 18.
    Wong, P.W., Chen, H., Tang, Z.: On steganalysis of plus-minus one embedding in continuous-tone images. In: Delp, E., Wong, P.W. (eds.) Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, CA, January 16–20, 2005, vol. 5681, pp. 643–652 (2005)Google Scholar
  19. 19.
    Ker, A.: Resampling and the detection of LSB matching in color bitmaps. In: Delp, E., Wong, P.W. (eds.) Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, CA, January 16–20, 2005, vol. 5681, pp. 1–15 (2005)Google Scholar
  20. 20.
    Ker, A.D.: Steganalysis of LSB matching in grayscale images. IEEE Signal Processing Letters 12, 441–444 (2005)CrossRefGoogle Scholar
  21. 21.
    Goljan, M., Fridrich, J., Holotyak, T.: New blind steganalysis and its implications. In: Delp, E., Wong, P.W. (eds.) Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, January 16–19, 2006, vol. 6072, pp. 1–13 (2006)Google Scholar
  22. 22.
    Fridrich, J., Goljan, M., Du, R.: Steganalysis based on JPEG compatibility. In: Tescher, A.G. (ed.) Special Session on Theoretical and Practical Issues in Digital Watermarking and Data Hiding, SPIE Multimedia Systems and Applications IV, Denver, CO, August 20–24, 2001, vol. 4518, pp. 275–280 (2001)Google Scholar
  23. 23.
    Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography using wet paper codes. In: Dittman, J., Fridrich, J. (eds.) Proceedings ACM Multimedia and Security Workshop, Magdeburg, Germany, September 20-21, 2004, pp. 4–15. ACM Press, New York (2004)Google Scholar
  24. 24.
    Wainwright, M.J., Maneva, E.: Lossy source encoding via message-passing and decimation over generalized codewords of LDGM codes. In: Proceedings of the International Symposium on Information Theory, Adelaide, Australia (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jessica Fridrich
    • 1
  • Petr Lisoněk
    • 2
  • David Soukal
    • 1
  1. 1.Binghamton University, Binghamton, NY 13902–6000 
  2. 2.Simon Fraser University, Burnaby, Britsh Columbia, V5A 1S6Canada

Personalised recommendations