Organic Computing and Swarm Intelligence

  • Daniel Merkle
  • Martin Middendorf
  • Alexander Scheidler
Part of the Natural Computing Series book series (NCS)


The relations between swarm intelligence and organic computing are discussed in this chapter. The aim of organic computing is to design and study computing systems that consist of many autonomous components and show forms of collective behavior. Such organic computing systems (OC systems) should possess self-x properties (e.g., self-healing, self-managing, self-optimizing), have a decentralized control, and be adaptive to changing requirements of their user. Examples of OC systems are described in this chapter and two case studies are presented that show in detail that OC systems share important properties with social insect colonies and how methods of swarm intelligence can be used to solve problems in organic computing.


Swarm Intelligence Simulation Step Emergent Behavior Cluster Agent Speed Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Baddeley, R. Turner: spatstat website, URL:
  2. 2.
    C. Anderson, J. J. Boomsma, J. J. Bartholdi, III: Task partitioning in insect societies: bucket brigades. Insectes Sociaux, 49(2):171–180, 2002.CrossRefGoogle Scholar
  3. 3.
    T. Balch: Hierarchical Social Entropy: An information theoretic measure of robot team diversity. Autonomous Robots, 8(3):209–237, 2000.CrossRefGoogle Scholar
  4. 4.
    J.-C. de Biseau, J. M. Pasteels: Response thresholds to recruitment signals and the regulation of foraging intensity in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Behavioural Processes, 48(3):137–148, 2000.Google Scholar
  5. 5.
    A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer, O. Bringmann, W. Rosenstiel: Organic computing at the system on chip level. In: G. De Micheli, S. Mir, and R. Reis (editors), Proc. IFIP International Conference on Very Large Scale Integration of System on Chip (VLSI-SoC 2006). Springer, Berlin, Germany, 338–341, 2006.CrossRefGoogle Scholar
  6. 6.
    E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: >From Natural to Artificial Systems. Oxford University Press, New York, 1999.zbMATHGoogle Scholar
  7. 7.
    M.D. Cox, G.B. Blanchard: Gaseous templates in ant nests. Journal of Theoretic Biology, 204:223–238, 2000.CrossRefGoogle Scholar
  8. 8.
    L. Chrétien: Organisation spatiale du matériel provenant de l’excavation du nid chez Messor barbarus et des cadavres d’ouvrières chez Lasius niger (Hymenopterae: Formicidae). Université Libre de Bruxelles, Département de Biologie Animale, 1996.Google Scholar
  9. 9.
    R. Cunningham, J. Dowling, A. Harrington, V. Reynolds, R. Meier, V. Cahill: Self-Optimization in a Next-Generation Urban Traffic Control Environment. ERCIM News, 64:55–56, 2006.Google Scholar
  10. 10.
    J.-L. Deneubourg, S. Goss, N. Franks, A.B. Sendova-Franks, C. Detrain, L. Chretien: The dynamics of collective sorting: Robot-like ants and ant-like robots. In: J.-A. Meyer and S. Wilson, editors, Proc. of the 1st Int. Conf., on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press/ Bradford Books, 356–363, 1991.Google Scholar
  11. 11.
    S. Depickère, D. Fresneau, J.-L. Deneubourg. A basis for spatial and social patterns in ant species: dynamics and mechanisms of aggregation. Journal of Insect Behavior, 17(1):81–97, 2004.CrossRefGoogle Scholar
  12. 12.
    J. Delgado, R.V. Sole: Self-synchronization and task fulfilment in ant colonies, Journal of Theoretical Biology, 205(3):433–441, 2000.CrossRefGoogle Scholar
  13. 13.
    J.L. Deneubourg, A. Lioni, C. Detrain: Dynamics of aggregation and emergence of cooperation. The Biological Bulletin, 202:262–267, 2002.CrossRefGoogle Scholar
  14. 14.
    S. Depickère, D. Fresneau, J.-L. Deneubourg: Dynamics of aggregation in Lasius niger (Formicidae): influence of polyethism. Insectes Sociaux, 51(1):81–90, 2004.Google Scholar
  15. 15.
    M. Dorigo, T. Stützle: Ant Colony Optimization. MIT Press, 2004.Google Scholar
  16. 16.
    D. Fey, M. Komann, F. Schurz, A. Loos: An organic computing architecture for visual microprocessors based on marching pixels. Proc. IEEE International Symposium on Circuits and Systems (ISCAS 2007), IEEE Press, 2689–2692, 2007.Google Scholar
  17. 17.
    S. P. Fekete, C. Schmidt, A. Wegener, S. Fischer: Hovering data clouds for recognizing traffic jams. In: T. Margaria, A. Philippou, and B. Steffen (editors), Proc. 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (IEEE-ISOLA 2006), IEEE Press, 213–218, 2006.Google Scholar
  18. 18.
    N.R. Franks, A. Sendova-Franks: Brood sorting by ants: distributing the workload over the work surface. Behav. Ecol. Sociobiol., 30:109–123, 1992.CrossRefGoogle Scholar
  19. 19.
    Gesellschaft für Informatik: Organic Computing / VDE, ITG, GI - Positionspapier. 2003.Google Scholar
  20. 20.
    H. Gutowitz: Complexity Seeking Ants. Unpublished report, 1993.Google Scholar
  21. 21.
    P. P. Grassé: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La theorie de la stigmergie: Essai d’interpretation des termites constructeurs. Insectes Sociaux, 6:41–83, 1959.CrossRefGoogle Scholar
  22. 22.
    D. Gr\"unbaum, Schooling as a strategy for taxis in a noisy environment. Evolutionary Ecology, 12:503–522, 1998.Google Scholar
  23. 23.
    J. Handl, B. Meyer: Improved ant-based clustering and sorting in a document retrieval interface. In: J.-J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fern´ndez-Villacañas, and H.-P. Schwefel, editors, Proc. Seventh Int. Conference on Parallel Problem Solving from Nature (PPSN VII). volume 2439 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 913–923, 2002.Google Scholar
  24. 24.
    J. Handl, J. Knowles, M. Dorigo: Strategies for the increased robustness of ant-based clustering. In: G. Di Marzo Serugendo, A. Karageorgos, O.F. Rana, and F. Zambonelli, editors, Postproc. of the First International Workshop on Engineering Self-Organising Applications (ESOA 2003), volume 2977 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 90–104, 2003.Google Scholar
  25. 25.
    J. Handl, J. Knowles, M. Dorigo: On the performance of ant-based clustering. In: A. Abraham, M. K\"oppen, and K. Franke, editors, Proc. 3rd Int. Conf. on Hybrid Intell. Systems (HIS 2003), IOS Press, 2003.Google Scholar
  26. 26.
    S. Janson, M. Middendorf, M. Beekman: Searching for a new home — scouting behavior of honeybee swarms. Behavioral Ecology, 18:384–392, 2007.CrossRefGoogle Scholar
  27. 27.
    P. M. Kanade, L. O. Hall: Fuzzy Ants as a clustering concept. In: E. Walker, editor, Proceedings 22nd International Conference of the North American Fuzzy Information Processing Society NAFIPS 2003, IEEE Systems Man and Cybernetics Society, 227–232, 2003.Google Scholar
  28. 28.
    M. Komann, D. Fey: Marching pixels computing principles in embedded systems using organic parallel dardware. Proc. International Symposium on Parallel Computing in Electrical Engineering (PARELEC’06), 369–373, IEEE CS Press, 2006.Google Scholar
  29. 29.
    P. Kuntz, D. Snyers: Emergent colonization and graph partitioning. In: D. Cliff et al., editors, Proc. of the 1st Int. Conf, on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press, 494–500, 1994.Google Scholar
  30. 30.
    N. Labroche, N. Monmarche, G. Venturini: A new clustering algorithm based on the chemical recognition system of ants. In: F. van Harmelen, editor, Proc. of the 15th European Conference on Artificial Intelligence, ECAI 2002, IOS Press, 345–349, 2002.Google Scholar
  31. 31.
    N. Labroche, N. Monmarche, G. Venturini: AntClust: Ant clustering and web usage mining. In: E. Cantú-Paz et al., editors, Proc. of the 2003 Genetic and Evolutionary Computation Conference, volume 2723 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 25–36, 2003.Google Scholar
  32. 32.
    N. Labroche, N. Monmarche, G. Venturini: Visual clustering with artificial ants colonies. In: V. Palade, R.J. Howlett, L.C. Jain, editors, Proc. of the 7th International Conference on Knowledge-Based Intelligent Information & Engineering Systems (KES 2003), volume 2773 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 332–338, 2003.Google Scholar
  33. 33.
    M.N.M. van Lieshout, A.J. Baddeley: A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica, 50:344–361, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    D. Merkle, M. Middendorf, A. Scheidler: Swarm controlled emergence — Designing an anti-clustering ant system. Proc. of the 2007 IEEE Swarm Intelligence Symposium, IEEE Press, 10 pages, 2007.Google Scholar
  35. 35.
    F. Mösch, M. Litza, A. El Sayed Auf, E. Maehle, K.-E. Groβpietsch, W. Brockmann: ORCA – Towards an organic robotic control. In: H. de Meer and J.P.G. Sterbenz, editors, Proc. 1st International Workshop on Self-Organizing Systems (IWSOS 2006) and 3rd International Workshop on New Trends in Network Architectures and Services (EuroNGI 2006), volume 4124 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 251–253, 2006.Google Scholar
  36. 36.
    M. Mnif, C. M\"uller-Schloer: Quantitative emergence. In: Proc. of the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE SMCals 2006), 2006.Google Scholar
  37. 37.
    C. M\"uller-Schloer, C. von der Malsburg, R. P. W\"urtz: Organic computing. Informatik Spektrum, 27(4):332–336, 2004.Google Scholar
  38. 38.
    C. Müller-Schloer, B. Sick: Emergence in organic computing systems: Discussion of a controversial concept. In: L.T. Yang, H. Jin, J. Ma, and T. Ungerer, editors, Proc. 3rd International Conference on Autonomic and Trusted Computing, volume 4158 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 1–16, 2006.Google Scholar
  39. 39.
    G. Nicolas and D. Sillans: Immediate and latent effects of carbon dioxide on insects. Annual Review of Entomology, 34:97–116, 1989.CrossRefGoogle Scholar
  40. 40.
    U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, H. Schmeck: Towards a generic observer/controller architecture for organic computing. Köllen Verlag, LNI P-93, 112–119, 2006.Google Scholar
  41. 41.
    F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, H. Schmeck: An organic architecture for traffic light controllers. Proc. GI Jahrestagung 2006, Lecture Notes in Informatics 93:120–127, 2006.Google Scholar
  42. 42.
    F. Rochner, C. Müller-Schloer: Emergence in technical systems. it — Special Issue on Organic Computing, 47:188–200, 2005.Google Scholar
  43. 43.
    A. Scheidler, D. Merkle, M. Middendorf: Emergent sorting patterns and individual differences of randomly moving ant like agents. In: S. Artmann and P. Dittrich, editors, Proc. 7th German Workshop on Artificial Life (GWAL-7), IOS Press, 11 pp., 2006.Google Scholar
  44. 44.
    H. Schmeck: Organic computing – A new vision for distributed embedded systems. Proc. of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), IEEE CS Press, 201–203, 2005.Google Scholar
  45. 45.
    A.B. Sendova-Franks, J.V. Lent: Random walk models of worker sorting in ant colonies. Journal of Theoretical Biology, 217:255–274, 2002.CrossRefMathSciNetGoogle Scholar
  46. 46.
    T. Schöler, C. Müller-Schloer: An observer/controller architecture for adaptive reconfigurable stacks. In: M. Beigl and P. Lukowicz, editors, Proc. of the 18th International Conference on Architecture of Computing Systems (ARCS 05), volume 3432 of Lecture Notes of Computer Science, Springer, Berlin, Germany, 139–153, 2006.Google Scholar
  47. 47.
    R.V. Sole, E. Bonabeau, J. Delgado, P. Fernandez, J. Marin: Pattern formation and optimization in army ant raids. Artificial Life, 6(3):219–226, 2000.CrossRefGoogle Scholar
  48. 48.
    G. Theraulaz, E. Bonabeau, J.L. Deneubourg: Response threshold reinforcement and division of labour in insect colonies. Proc. Roy. Soc. London B, 265:327–335, 1998.Google Scholar
  49. 49.
    G. Theraulaz, E. Bonabeau, S.C. Nicolis, R.V. Sole, V. Fourcassie, S. Blanco, R. Fournier, J.L. Joly, P. Fernandez, A. Grimal, P. Dalle, J.L. Deneubourg: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci., 99(15):9645–9649, 2002.zbMATHCrossRefGoogle Scholar
  50. 50.
    G. Theraulaz, E. Bonabeau, R.V. Sole, B. Schatz, J.L. Deneubourg: Task Partitioning in a ponerine ant. Journal of Theoretical Biology, 215(4):481–489, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Merkle
    • 1
  • Martin Middendorf
    • 1
  • Alexander Scheidler
    • 1
  1. 1.Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations