Advertisement

An Agent-Based Approach to Self-organized Production

  • Thomas Seidel
  • Jeanette Hartwig
  • Richard L. Sanders
  • Dirk Helbing
Part of the Natural Computing Series book series (NCS)

Abstract

The chapter describes the modeling of a material handling system with the production of individual units in a scheduled order. The units represent the agents in the model and are transported in the system which is abstracted as a directed graph. Since the hindrances of units on their path to the destination can lead to inefficiencies in the production, the blockages of units are to be reduced. Therefore, the units operate in the system by means of local interactions in the conveying elements and indirect interactions based on a measure of possible hindrances. If most of the units behave cooperatively (“socially”), the blockings in the system are reduced.

A simulation based on the model shows the collective behavior of the units in the system. The transport processes in the simulation can be compared with the processes in a real plant, which draws conclusions about the consequences of production based on superordinate planning.

Keywords

Cycle Time Vehicle Rout Problem Transport Time Material Handling System Fast Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory, Algorithms, and Applications.Prentice Hall, Inc. Upper Saddle River, NJ, USA, 1993.Google Scholar
  2. 2.
    T. Altiok.Performance Analysis of Manufacturing Systems.Springer, 1997.Google Scholar
  3. 3.
    D. Armbruster, K. Kaneko, and A. S. Mikhailov, editors.Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells.World Scientific Publishing, 2006.Google Scholar
  4. 4.
    D. Arnold and K. Furmans.Materialfluss in Logistiksystemen.Springer, 4th edition, 2005.Google Scholar
  5. 5.
    N. Ascheuer, S. O. Krumke, and J. Rambau.Online dial-a-ride problems: Minimizing the completion time.In: Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, pages 639–650, 2000.Google Scholar
  6. 6.
    F. L. Baccelli, G. Cohen, and G. J. Olsder.Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley, 1992.Google Scholar
  7. 7.
    L. Ben-Naoum, R. Boel, L. Bongaerts, B. De Schutter, Y. Peng, P. Valckenaers, J. Vandewalle, and V. Wertz. Methodologies for discrete event dynamic systems: A survey. Journal of the American Society for Horticultural Science, 36(4):3–14, 1995.Google Scholar
  8. 8.
    C. Bertelle, A. Dutot, F. Guinand, and D. Olivier. Distribution of agent based simulation with colored ant algorithm.In: A. Verbraeck and W. Krug, editors, Proceedings 14th European Simulation Symposium, pages 766–771. SCS Europe BVBA, 2002.Google Scholar
  9. 9.
    C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35:268–308, 2003.Google Scholar
  10. 10.
    E. Bonabeau. Social insect colonies as complex adaptive systems. Ecosystems, 1:437–443, 1998.Google Scholar
  11. 11.
    E. Bonabeau. Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99 (Suppl. 3):7280–7287, 2002.Google Scholar
  12. 12.
    E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from social insect behaviour. Nature, 406:39–42, 2000.Google Scholar
  13. 13.
    O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, Part I: Route construction and local search algorithms; vehicle routing problem with time windows, Part II: Metaheuristics. Transportation Science, 39:104–139, 2005.CrossRefGoogle Scholar
  14. 14.
    S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau.Self-Organization in Biological Systems.Princeton University Press, 2001.Google Scholar
  15. 15.
    D. Corne, M. Dorigo, and F. Glover.New Ideas in Optimization.McGraw-Hill, 1999.Google Scholar
  16. 16.
    V. Darley. Towards a Theory of Autonomous, Optimising Agents.PhD thesis, Harvard University, Cambridge, 1999.Google Scholar
  17. 17.
    V. Darley, D. Sanders, and P. v. Tessin. An agent-based model of a corrugated box factory: The tradeoff between finished-goodstock and on-time-in-full delivery. In: H. Coelho and B. Espinasse, editors, Proc. of the Fifth Workshop on Agent-Based Simulation, pages 17–22,2004.Google Scholar
  18. 18.
    B. de Schutter and T. van den Boom. Model predictive control for perturbed max-plus-linear systems.Systems and Control Letters, 45(1):21–33, 2002.Google Scholar
  19. 19.
    B. De Schutter and T. van den Boom. MPC for discrete-event systems with soft and hard synchronisation constraints. International Journal of Control, 76(1):82–94, 2003.Google Scholar
  20. 20.
    J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time-windows by column generation. Networks, 14:545–565, 1984.Google Scholar
  21. 21.
    W. Domschke.Logistik: Rundreisen und Touren.Oldenbourg, 1997.Google Scholar
  22. 22.
    M. Dorigo.Optimization, Learning and Natural Algorithms.PhD thesis, Politecnico di Milano, 1992.Google Scholar
  23. 23.
    M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future Generation Computer Systems, 16:851–871, 2000.Google Scholar
  24. 24.
    M. Dorigo and T. Stützle.Ant Colony Optimization.MIT Press, 2004.Google Scholar
  25. 25.
    A. Drogoul and J. Ferber. Multi-agent simulation as a tool for modeling societies: Application to social differentiation in ant colonies.In: Selected papers from the 4th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Artificial Social Systems, pages 3–23. Springer, London, 1992.Google Scholar
  26. 26.
    A. Dussutour, V. Fourcassié, D. Helbing, and J.-L. Deneubourg. Optimal traffic organization in ants under crowded conditions. Nature, 428:70–73, 2004.Google Scholar
  27. 27.
    K. Furmans. Ein Beitrag zur theoretischen Behandlung von Materialfluβpuffern in Bediensystemnetzwerken.Wissenschaftliche Berichte des Institutes für Fördertechnik und Logistiksysteme der Universität Karlsruhe (TH), 1992.Google Scholar
  28. 28.
    K. Furmans.Bedientheoretische Methoden als Hilfsmittel der Materialflussplanung.Wissenschaftliche Berichte des Institutes für Fördertechnik und Logistiksysteme der Universität Karlsruhe (TH), 2000.Google Scholar
  29. 29.
    M. Gendreau and J.-Y. Potvin.Dynamic vehicle routing and dispatching.In: T. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 115–126. Kluwer, 1998.Google Scholar
  30. 30.
    C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2001.zbMATHGoogle Scholar
  31. 31.
    W. Groβeschallau. Materialflussrechnung: Modelle und Verfahren zur Analyse und Berechnung von Materialfluβsystemen. Springer, Berlin, Heidelberg, 1984.Google Scholar
  32. 32.
    T. Gudehus.Logistik 2.Springer, 2000.Google Scholar
  33. 33.
    J. Hartwig.Photographs of despatch machines.2006.Google Scholar
  34. 34.
    D. Helbing. Traffic and related self-driven many-particle systems. Review of Modern Physics, 73:1067–1141, 2001.Google Scholar
  35. 35.
    D. Helbing. The wonderful world of active many-particle systems. Advances in Solid State Physics, 41:357–368, 2001.Google Scholar
  36. 36.
    D. Helbing. Modelling supply networks and business cycles as unstable transport phenomena. New Journal of Physics, 5:90.1–90.28, 2003.Google Scholar
  37. 37.
    D. Helbing.Modeling and optimization of production processes: Lessons from traffic dynamics.In: G. Radons and R. Neugebauer, editors, Nonlinear Dynamics of Production Systems, pages 39–54. Wiley InterScience, 2004.Google Scholar
  38. 38.
    D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39:1–34, 2005.CrossRefGoogle Scholar
  39. 39.
    D. Helbing, I. Farkas, and T. Vicsek.Simulating dynamical features of escape panic. Nature, 407:487–490, 2000.Google Scholar
  40. 40.
    D. Helbing, I. J. Farkas, P. Mol\’anr, and T. Vicsek. Simulation of pedestrian crowds in normal and evacuation situations.In: M. Schreckenberg and S. D. Sarma, editors, Pedestrian and Evacuation Dynamics, pages 21–58. Springer, Berlin, 2002.Google Scholar
  41. 41.
    D. Helbing, I. J. Farkas, and T. Vicsek. Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett., 84(6):1240–1243, 2000.CrossRefGoogle Scholar
  42. 42.
    D. Helbing, S. Lämmer, and J.-P. Lebacque. Self-organized control of irregular or perturbed network traffic.In: C. Deissenberg and R. F. Hartl, editors, Optimal Control and Dynamic Games, pages 239–274. Springer, Dordrecht, 2005.Google Scholar
  43. 43.
    W. Hopp and M. Spearman. Factory Physics. McGraw-Hill Irwin, 2000.Google Scholar
  44. 44.
    M. Hüttner. Prognoseverfahren und ihre Anwendung. Walter de Gruyter, Berlin, 1986.Google Scholar
  45. 45.
    J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wilson. Heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part A: Policy and Practice, 20B:243–257, 1986.Google Scholar
  46. 46.
    V. S. Kouikoglou and Y. A. Phillis. An exact discrete-event model and control policies for production lines with buffers. IEEE Transactions on Automatic Control, 36(5):515–527, 1991.CrossRefGoogle Scholar
  47. 47.
    N. Krivulin.The max-plus algebra approach in modelling of queueing networks.In: Summer Computer Simulation Conference, pages 485–490. The Society for Computer Simulation, 1996.Google Scholar
  48. 48.
    C. Kube and E. Bonabeau. Cooperative transport by ants and robots. Robotic and Autonomous Systems, 30:85–101, 2000.CrossRefGoogle Scholar
  49. 49.
    P. R. Kumar. Scheduling queueing networks: Stability, performance analysis and design.In: F. P. Kelly and R. J. Williams, editors, IMA Volumes in Mathematic and its Applications, pages 21–70. Springer, New York, 1995.Google Scholar
  50. 50.
    P. R. Kumar and T. I. Seidman. Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic Control, 35(3):289–298, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    H. C. Lau, M. Sim, and K. M. Teo. Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 148(3):559–569, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    S. H. Lu and P. R. Kumar. Distributed scheduling based on due dates and buffer priorities. IEEE Transactions on Automatic Control, 36(12):1406–1416, 1991.CrossRefGoogle Scholar
  53. 53.
    S. Lämmer, H. Korib, K. Peters, and D. Helbing. Decentralised control of material or traffic flows in networks using phase-synchronisation. Physica A, 363:39–47, 2006.CrossRefGoogle Scholar
  54. 54.
    G. Mehlhorn, editor.Der Ingenieurbau.Ernst & Sohn, 1995.Google Scholar
  55. 55.
    R. Möhring, E. Köhler, E. Gawrilow, and B. Stenzel.Conflict-free real-time AGV routing.In: H. Fleuren, D. den Hertog, and P. Kort, editors, Operations Research Proceedings 2004: selected Papers of the Annual International Conference of the GOR, pages 18–24. Springer, 2005.Google Scholar
  56. 56.
    S. Nahmias. Production and Operations Analysis. McGraw-Hill Irwin, 2001.Google Scholar
  57. 57.
    G. Nikolakopoulou, S. Kortesis, A. Synefaki, and R. Kalfakakou. Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 152(2):520–527, 2004.zbMATHCrossRefGoogle Scholar
  58. 58.
    J. R. Perkins and P. R. Kumar. Stable distributed, real-time scheduling of flexible manufacturing, assembly, disassembly systems. IEEE Transactions on Automatic Control, 34(2):139–148, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    K. Peters, A. Johansson, and D. Helbing. Swarm intelligence beyond stigmergy: Traffic optimization in ants. Künstliche Intelligenz, 4:11–16, 2005.Google Scholar
  60. 60.
    H. N. Psaraftis. Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transportation Science, 14:130–154, 1980.CrossRefGoogle Scholar
  61. 61.
    J. Quadrat, M. Akian, G. Cohen, S. Gaubert, and M. Viot.Max-plus algebra and applications to system theory and optimal control.In: Proceedings of the International Congress of Mathematicians 1994, pages 1502–1511. Birkh\"auser, 1995.Google Scholar
  62. 62.
    S. J. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.Prentice-Hall, 2002.Google Scholar
  63. 63.
    SCA Packaging Aylesford Ltd.Technische Daten von Verarbeitungsmaschinen, 2002-2005.Google Scholar
  64. 64.
    SCA Packaging UK & Ireland Ltd., Aylesford.SCA Packaging Product Knowledge Programme, 2003.Google Scholar
  65. 65.
    T. Seidel.Modellierung von Produktionsnetzwerken aus der Perspektive interagierender Transportprozesse.PhD thesis, Technische Universität Dresden, 2007.Google Scholar
  66. 66.
    D. J. Stilwell and J. S. Bay. Toward the development of a material transport system using swarms of ant-like robots.In: Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on, pages 766–771, 1993.Google Scholar
  67. 67.
    E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541–564, 2002.CrossRefGoogle Scholar
  68. 68.
    G. Theraulaz and E. Bonabeau. Coordination in distributed buildings. Science, 269:686–688, 1995.CrossRefGoogle Scholar
  69. 69.
    G. Theraulaz and E. Bonabeau. Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology, 177:381–400, 1995.CrossRefGoogle Scholar
  70. 70.
    G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life, 5(2):97–116, 1999.Google Scholar
  71. 71.
    G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. The mechanisms and rules of coordinated building in social insect.In: C. Detrain, J.-L. Deneubourg, and J. Pasteels, editors, Information Processing in Social Insects, pages 309–330. Birkhäuser, Basel, 1999.Google Scholar
  72. 72.
    G. Weiβ.Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.MIT Press, 1999.Google Scholar
  73. 73.
    G. Weiβ. Agent orientation in software engineering. The Knowledge Engineering Review, 16:349–373, 2001.Google Scholar
  74. 74.
    M. Wooldridge. An Introduction to Multiagent Systems.Wiley & Sons, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Seidel
    • 1
  • Jeanette Hartwig
    • 2
  • Richard L. Sanders
    • 3
  • Dirk Helbing
    • 1
    • 4
    • 5
  1. 1.Institute for Transport 8 EconomicsDresden University of TechnologyDresdenGermany
  2. 2.SCA Packaging LtdWiganUnited Kingdom
  3. 3.Institute of Economic Research Lund UniversityLundSweden
  4. 4.Collegium Budapest–Institute for Advanced StudyBudapestHungary
  5. 5.Department of Humanities and Social SciencesETH ZurichSwitzerland

Personalised recommendations