Advertisement

Swarm Intelligence in Optimization

  • Christian Blum
  • Xiaodong Li
Part of the Natural Computing Series book series (NCS)

Keywords

Particle Swarm Optimization Particle Swarm Pareto Front Evolutionary Computation Multiobjective Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Agassounoun, A. Martinoli, and R. Goodman. A scalable, distributed algorithm for allocating workers in embedded systems. In Terry Bahill, editor, Proceedings of the 2001 IEEE Systems, Man and Cybernetics Conference, pages 3367–3373. IEEE Press, 2001.Google Scholar
  2. 2.
    S. Alupoaei and S. Katkoori. Ant colony system application to macrocell overlap removal. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(10):1118–1122, 2004.Google Scholar
  3. 3.
    J. Bautista and J. Pereira. Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research, 177(3), 2007.Google Scholar
  4. 4.
    G. Beni. The concept of cellular robotic systems. In Proceedings of the IEEE International Symposium on Intelligent Systems, pages 57–62. IEEE Press, Piscataway, NJ, 1988.Google Scholar
  5. 5.
    L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimization approach to the probabilistic traveling salesman problem. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacanas, and H.-P. Schwefel, editors, Proceedings of PPSN VII, Seventh International Conference on Parallel Problem Solving from Nature, volume 2439 of Lecture Notes in Computer Science, pages 883–892. Springer, Berlin, Germany, 2002.Google Scholar
  6. 6.
    B. Bilchev and I. C. Parmee. The ant colony metaphor for searching continuous design spaces. In T. C. Fogarty, editor, Proceedings of the AISB Workshop on Evolutionary Computation, volume 993 of Lecture Notes in Computer Science, pages 25–39. Springer, Berlin, Germany, 1995.Google Scholar
  7. 7.
    M. Birattari, G. Di Caro, and M. Dorigo. Toward the formal foundation of ant programming. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 188–201. Springer, Berlin, Germany, 2002.Google Scholar
  8. 8.
    S. Bird and X. Li. Adaptively choosing niching parameters in a PSO. In Mike Cattolico, editor, Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006, pages 3–10. ACM, 2006.Google Scholar
  9. 9.
    T. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In Proc. the Workshop on Evolutionary Algorithms Dynamic Optimization Problems (EvoDOP 2003), pages 19–26, 2002.Google Scholar
  10. 10.
    T. Blackwell and P. J. Bentley. Improvised music with swarms. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pages 1462–1467. IEEE Press, 2002.Google Scholar
  11. 11.
    T. Blackwell and J. Branke. Multi-swarm optimization in dynamic environments. In EvoWorkshops, volume 3005 of Lecture Notes in Computer Science, pages 489–500. Springer, 2004.Google Scholar
  12. 12.
    T. Blackwell and J. Branke. Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation, 10(4):459–472, 2006.CrossRefGoogle Scholar
  13. 13.
    M. Blesa and C. Blum. Ant colony optimization for the maximum edge-disjoint paths problem. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, R. Rothlauf, G. D. Smith, and G. Squillero, editors, Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2004, volume 3005 of Lecture Notes in Computer Science, pages 160–169. Springer, Berlin, Germany, 2004.Google Scholar
  14. 14.
    C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6):1565–1591, 2005.CrossRefGoogle Scholar
  15. 15.
    C. Blum, J. Bautista, and J. Pereira. Beam-ACO applied to assembly line balancing. In M. Dorigo, L. M. Gambardella, A. Martinoli, R. Poli, and T. Stützle, editors, Ant Colony Optimization and Swarm Intelligence – Proceedings of ANTS 2006 – Fifth International Workshop, volume 4150 of Lecture Notes in Computer Science, pages 96–107. Springer, Berlin, Germany, 2006.Google Scholar
  16. 16.
    C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 34(2):1161–1172, 2004.CrossRefGoogle Scholar
  17. 17.
    C. Blum and M. Dorigo. Search bias in ant colony optimization: On the role of competition-balanced systems. IEEE Transactions on Evolutionary Computation, 9(2):159–174, 2005.CrossRefMathSciNetGoogle Scholar
  18. 18.
    C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.CrossRefGoogle Scholar
  19. 19.
    C. Blum and M. Sampels. An ant colony optimization algorithm for shop scheduling problems. Journal of Mathematical Modelling and Algorithms, 3(3):285–308, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Blum and M. Yábar Vallès. Multi-level ant colony optimization for DNA sequencing by hybridization. In F. Almeida, M. Blesa, C. Blum, J. M. Moreno, M. Pèrez, A. Roli, and M. Sampels, editors, Proceedings of HM 2006 – 3rd International Workshop on Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 94–109. Springer-Verlag, Berlin, Germany, 2006.Google Scholar
  21. 21.
    E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, NY, 1999.zbMATHGoogle Scholar
  22. 22.
    E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Fixed response thresholds and the regulation of division of labor in social societies. Bulletin of Mathematical Biology, 60:753–807, 1998.zbMATHCrossRefGoogle Scholar
  23. 23.
    A. Brandt. Multilevel computations: Review and recent developments. In S. F. McCormick, editor, Multigrid Methods: Theory, Applications, and Supercomputing, Proceedings of the 3rd Copper Mountain Conference on Multigrid Methods, volume 110 of Lecture Notes in Pure and Applied Mathematics, pages 35–62. Marcel Dekker, New York, 1988.Google Scholar
  24. 24.
    J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Norwell, MA, 2002.zbMATHGoogle Scholar
  25. 25.
    T. N. Bui and J. R. Rizzo Jr. Finding maximum cliques with distributed ants. In K. Deb et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), volume 3102 of Lecture Notes in Computer Science, pages 24–35. Springer, Berlin, Germany, 2004.Google Scholar
  26. 26.
    B. Bullnheimer, R. Hartl, and C. Strauss. A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics, 7(1):25–38, 1999.zbMATHMathSciNetGoogle Scholar
  27. 27.
    M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic scheduling and division of labor in social insects. Adaptive Behavior, 8(3):83–96, 2000.CrossRefGoogle Scholar
  28. 28.
    A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic environments. In the Proceedings of the International Conference on Artificial Intelligence (ICAI 2000), pages 429–434, Las Vegas, Nevada, USA, 2000.Google Scholar
  29. 29.
    A. Carlisle and G. Dozier. Tracking changing extrema with adaptive particle swarm optimizer. In Proceedings of the 5th Biannual World Automation Congress, pages 265–270, Orlando FL, USA, 2002.Google Scholar
  30. 30.
    C.-Y. Chen and F. Ye. Particle swarm optimization algorithm and its application to clustering analysis. In IEEE International Conference on Networking, Sensing and Control, volume 2, pages 789–794, 2004.CrossRefGoogle Scholar
  31. 31.
    V. A. Cicirello and S. S. Smith. Wasp-like agents for distributed factory coordination. Journal of Autonomous Agents and Multi-Agent Systems, 8:237–266, 2004.CrossRefGoogle Scholar
  32. 32.
    M. Clerc. Particle Swarm Optimization. ISTE Ltd, UK, 2006.zbMATHGoogle Scholar
  33. 33.
    M. Clerc and J. Kennedy. The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6:58–73, 2002.CrossRefGoogle Scholar
  34. 34.
    C. Coello Coello and M. Salazar Lechuga. MOPSO: A Proposal for multiple Objective Particle Swarm Optimization. In Congress on Evolutionary Computation (CEC 2002), volume 2, pages 1051–1056, Piscataway, New Jersey, May 2002. IEEE Service Center.Google Scholar
  35. 35.
    A.V.E. Conradie, R. Miikkulaninen, and C. Aldrich. Adaptive control utilizing neural swarming. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), New York, USA, 2002.Google Scholar
  36. 36.
    E.S. Correa, A. Freitas, and C.G. Johnson. A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, volume 1, pages 35–42, Seattle, Washington, USA, 2006. ACM Press.Google Scholar
  37. 37.
    P. Corry and E. Kozan. Ant colony optimization for machine layout problems. Computational Optimization and Applications, 28(3):287–310, 2004.Google Scholar
  38. 38.
    D. Costa and A. Hertz. Ants can color graphs. Journal of the Operational Research Society, 48:295–305, 1997.zbMATHCrossRefGoogle Scholar
  39. 39.
    K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.CrossRefGoogle Scholar
  40. 40.
    F. Della Croce, M. Ghirardi, and R. Tadei. Recovering beam search: enhancing the beam search approach for combinatorial optimisation problems. In Proceedings of PLANSIG 2002 – 21st workshop of the UK Planning and Scheduling Special Interest Group, pages 149–169, 2002.Google Scholar
  41. 41.
    M. L. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Proceedings of PPSN VI, Sixth International Conference on Parallel Problem Solving from Nature, volume 1917 of Lecture Notes in Computer Science, pages 611–620. Springer, Berlin, Germany, 2000.Google Scholar
  42. 42.
    J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behaviour, 3:159–168, 1990.CrossRefGoogle Scholar
  43. 43.
    Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrètien. The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proceedings of the First International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 1, pages 356–365. MIT Press, Cambridge, MA, 1991.Google Scholar
  44. 44.
    G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.zbMATHGoogle Scholar
  45. 45.
    K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131:79–99, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.Google Scholar
  47. 47.
    M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3):243–278, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, 1999.CrossRefGoogle Scholar
  49. 49.
    M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.CrossRefGoogle Scholar
  50. 50.
    M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.Google Scholar
  51. 51.
    M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 26(1):29–41, 1996.CrossRefGoogle Scholar
  52. 52.
    M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.Google Scholar
  53. 53.
    C. A. Dosoer and M. Vidyasagar. Feedback Systems: Input–Ouput Properties. Academics, New York, 1975.Google Scholar
  54. 54.
    J. Dréo and P. Siarry. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 216–221. Springer, Berlin, Germany, 2002.Google Scholar
  55. 55.
    R. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. In Proc. of IEEE Int. Conf. Evolutionary Computation, pages 84–88, 2000.Google Scholar
  56. 56.
    R. C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with particle swarms. In Proc. the 2001 Congress on Evolutionary Computation (CEC 2001), pages 94–100. IEEE Press, 2001.Google Scholar
  57. 57.
    R. C. Eberhart, P. K. Simpson, and R. W. Dobbins. Computational Intelligence PC Tools. Academic Press, Boston, 1996.Google Scholar
  58. 58.
    J. E. Fieldsend and S. Singh. A multiobjective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In Proceedings of the 2002 UK Workshop on Computational Intelligence, pages 37–44, Birmingham, UK, September 2002.Google Scholar
  59. 59.
    C. Gagné, W. L. Price, and M. Gravel. Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. Journal of the Operational Research Society, 53:895–906, 2002.zbMATHCrossRefGoogle Scholar
  60. 60.
    Z. L. Gaing. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2):384–391, June 2004.Google Scholar
  61. 61.
    L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies. In T. Baeck, T. Fukuda, and Z. Michalewicz, editors, Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC’96), pages 622–627. IEEE Press, Piscataway, NJ, 1996.Google Scholar
  62. 62.
    L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3):237–255, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    L. M. Gambardella, É. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76. McGraw-Hill, London, UK, 1999.Google Scholar
  64. 64.
    X. Gandibleux, X. Delorme, and V. T’Kindt. An ant colony optimisation algorithm for the set packing problem. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 49–60. Springer, Berlin, Germany, 2004.Google Scholar
  65. 65.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.Google Scholar
  66. 66.
    V. Georgiou, N. Pavlidis, K. Parsopoulos, and M. Vrahatis. Optimizing the performance of probabilistic neural networks in a bioinformatics task. In Proceedings of the EUNITE 2004 Conference, pages 34–40, 2004.Google Scholar
  67. 67.
    F. Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13:533–549, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, MA, 2002.Google Scholar
  69. 69.
    J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search, and ant colony optimization approaches for car sequencing problems. In S. Cagnoni, J. J. Romero Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, E. Marchiori, J.-A. Meyer, M. Middendorf, and G. R. Raidl, editors, Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003, volume 2611 of Lecture Notes in Computer Science, pages 246–257. Springer, Berlin, Germany, 2003.Google Scholar
  70. 70.
    P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. La théorie de la stigmergie: Essai d’interprétation des termites constructeurs. Insectes Sociaux, 6:41–81, 1959.CrossRefGoogle Scholar
  71. 71.
    V. G. Gudise and G. K. Venayagamoorthy. Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In IEEE Swarm Intelligence Symposium 2003 (SIS 2003), pages 110–117, Indianapolis, Indiana, USA, 2003.Google Scholar
  72. 72.
    C. Guèret, N. Monmarchè, and M. Slimane. Ants can play music. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 310–317. Springer, Berlin, Germany, 2004.Google Scholar
  73. 73.
    M. Guntsch and M. Middendorf. Pheromone modification strategies for ant algorithms applied to dynamic TSP. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001, volume 2037 of Lecture Notes in Computer Science, pages 213–222. Springer, Berlin, Germany, 2001.Google Scholar
  74. 74.
    M. Guntsch and M. Middendorf. Solving multiobjective permutation problems with population based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2636 of Lecture Notes in Computer Science, pages 464–478. Springer, Berlin, Germany, 2003.Google Scholar
  75. 75.
    W. J. Gutjahr. A graph-based ant system and its convergence. Future Generation Computer Systems, 16(9):873–888, 2000.CrossRefGoogle Scholar
  76. 76.
    W. J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution. Information Processing Letters, 82(3):145–153, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    J. Handl and B. Meyer. Improved ant-based clustering and sorting in a document retrieval interface. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacanas, and H.-P. Schwefel, editors, Proceedings of PPSN VII, Seventh International Conference on Parallel Problem Solving from Nature, volume 2439 of Lecture Notes in Computer Science, pages 913–923. Springer, Berlin, Germany, 2002.Google Scholar
  78. 78.
    F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated bird flocks. In S. Krasner, editor, The Ubiquity of Chaos, Washington, DC, 1990. AAAS Publications.Google Scholar
  79. 79.
    N. Higashi and H. Iba. Particle swarm optimization with Gaussian mutation. In Proc. of the 2003 IEEE Swarm Intelligence Symposium (SIS’03), pages 72–79, 2003.Google Scholar
  80. 80.
    H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam, The Netherlands, 2004.Google Scholar
  81. 81.
    X. Hu and R. Eberhart. Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pages 1677–1681. IEEE Press, 2002.Google Scholar
  82. 82.
    X. Hu and R. C. Eberhart. Adaptive particle swarm optimisation: detection and response to dynamic systems. In Proc. Congress on Evolutionary Computation, pages 1666–1670, 2002.Google Scholar
  83. 83.
    S. Janson and M. Middendorf. A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(6):1272–1282, 2005.CrossRefGoogle Scholar
  84. 84.
    S. Janson and M. Middendorf. A hierarchical particle swarm optimizer for noisy and dynamic environments. Genetic Programming and Evolvable Machines, 7(4):329–354, 2006.CrossRefGoogle Scholar
  85. 85.
    V. Kadirkamanathan, K. Selvarajah, and P. Fleming. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Transactions on Evolutionary Computation, 10(3):245–255, June 2006.Google Scholar
  86. 86.
    O. Karpenko, J. Shi, and Y. Dai. Prediction of MHC class II binders using the ant colony search strategy. Artificial Intelligence in Medicine, 35(1-2):147–156, 2005.CrossRefGoogle Scholar
  87. 87.
    S. Katare, A. Kalos, and D. West. A hybrid swarm optimizer for efficient parameter estimation. In Proceedings of the 2004 Congress on Evolutionary Computation CEC 2004), pages 309–315. IEEE Press, 2004.Google Scholar
  88. 88.
    J. Kennedy. The behaviour of particles. In Evolutionary Programming VII: Proceedings of the 7th Annual Conference, volume 1447 of Lecture Notes in Computer Science, pages 581–589, San Diego, CA, 1998. Springer, Berlin, Germany.Google Scholar
  89. 89.
    J. Kennedy. Bare bones particle swarms. In Proceedings of the IEEE Swarm Intelligence Symposium 2003 (SIS 2003), pages 0–87, Indianapolis, Indiana, USA, 2003.Google Scholar
  90. 90.
    J. Kennedy. In search of the essential particle swarm. In Proc. of the 2006 IEEE Congress on Evolutionary Computation, pages 6158–6165. IEEE Press, 2006.Google Scholar
  91. 91.
    J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE Press, Piscataway, NJ, 1995.Google Scholar
  92. 92.
    J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco, CA, 2004.Google Scholar
  93. 93.
    O. Korb, T. Stützle, and T. E. Exner. PLANTS: Application of ant colony optimization to structure-based drug design. In M. Dorigo, L. M. Gambardella, A. Martinoli, R. Poli, and T. Stützle, editors, Ant Colony Optimization and Swarm Intelligence – Proceedings of ANTS 2006 – Fifth International Workshop, volume 4150 of Lecture Notes in Computer Science, pages 247–258. Springer, Berlin, Germany, 2006.Google Scholar
  94. 94.
    P. Korošec, J. Šilc, and B. Robič. Mesh-partitioning with the multiple ant-colony algorithm. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 430–431. Springer, Berlin, Germany, 2004.Google Scholar
  95. 95.
    P. Korošec, J. Šilc, and B. Robič. Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Computing, 30:785–801, 2004.CrossRefGoogle Scholar
  96. 96.
    C. R. Kube and E. Bonabeau. Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30:85–101, 2000.CrossRefGoogle Scholar
  97. 97.
    P. Kuntz, D. Snyers, and P. Layzell. A stochastic heuristic for visualizing graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3):327–351, 1998.CrossRefGoogle Scholar
  98. 98.
    D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner. A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 30:39–64, 2000.CrossRefGoogle Scholar
  99. 99.
    E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Travelling Salesman Problem. John Wiley & Sons, New York, NY, 1985.Google Scholar
  100. 100.
    X. Li. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Computation—GECCO 2003. Proceedings, Part I, pages 37–48. Springer. Lecture Notes in Computer Science Vol. 2723, July 2003.Google Scholar
  101. 101.
    X. Li. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In K. Deb, editor, Proceedings of Genetic and Evolutionary Computation Conference 2004 (GECCO’04) (LNCS 3102), pages 105–116, 2004.Google Scholar
  102. 102.
    X. Li, J. Branke, and T. Blackwell. Particle swarm with speciation and adaptation in a dynamic environment. In Mike Cattolico, editor, Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006, pages 51–58. ACM, 2006.Google Scholar
  103. 103.
    X. Li and K.H. Dam. Comparing particle swarms for tracking extrema in dynamic environments. In Proc. of the 2003 IEEE Congress on Evolutionary Computation, pages 1772–1779, 2003.Google Scholar
  104. 104.
    J. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism. In Proc. of the 2006 IEEE Congress on Evolutionary Computation, pages 9–16. IEEE Press, 2006.Google Scholar
  105. 105.
    J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput., 10(3):281–295, June 2006.Google Scholar
  106. 106.
    M. López-Ibáñez, L. Paquete, and T. Stützle. On the design of ACO for the biobjective quadratic assignment problem. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 214–225. Springer, Berlin, Germany, 2004.Google Scholar
  107. 107.
    M. Lovbjerg and T. Krink. Extending particle swarm optimizers with self-organized criticality. In Proc. of the 2002 IEEE Congr. Evol. Comput., pages 1588–1593. IEEE Press, 2002.Google Scholar
  108. 108.
    E. D. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors, Proceedings of the 3rd International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 3 (SAB 94), pages 501–508. MIT Press, 1994.Google Scholar
  109. 109.
    V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    V. Maniezzo, M. Boschetti, and M. Jelasity. An ant approach to membership overlay design. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 37–48. Springer, Berlin, Germany, 2004.Google Scholar
  111. 111.
    V. Maniezzo and A. Colorni. The Ant System applied to the quadratic assignment problem. IEEE Transactions on Data and Knowledge Engineering, 11(5):769–778, 1999.CrossRefGoogle Scholar
  112. 112.
    V. Maniezzo and M. Milandri. An ant-based framework for very strongly constrained problems. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 222–227. Springer, Berlin, Germany, 2002.Google Scholar
  113. 113.
    R. Marinke, I. Matiko, E. Araujo, and L. Coelho. Particle swarm optimization (PSO) applied to fuzzy modeling in a thermal-vacuum system. In Fifth International Conference on Hybrid Intelligent Systems (HIS’05), pages 67–72. IEEE Computer Society, 2005.Google Scholar
  114. 114.
    K. Marriott and P. Stuckey. Programming With Constraints. MIT Press, Cambridge, MA, 1998.zbMATHGoogle Scholar
  115. 115.
    R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedforward neural networks training. In International Joint Conference on Neural Networks, pages 1895–1889. Honolulu (Hawaii), USA, 2002.Google Scholar
  116. 116.
    R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204–210, June 2004.Google Scholar
  117. 117.
    D. Merkle and M. Middendorf. Modelling ACO: Composed permutation problems. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 149–162. Springer, Berlin, Germany, 2002.Google Scholar
  118. 118.
    D. Merkle and M. Middendorf. Modelling the dynamics of ant colony optimization algorithms. Evolutionary Computation, 10(3):235–262, 2002.CrossRefGoogle Scholar
  119. 119.
    D. Merkle, M. Middendorf, and A. Scheidler. Self-organized task allocation for computing systems with reconfigurable components. In Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), 8 pages, IEEE press, 2006.Google Scholar
  120. 120.
    D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4):333–346, 2002.CrossRefGoogle Scholar
  121. 121.
    N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient descent. Artificial Life, 8(2):103–121, 2002.CrossRefGoogle Scholar
  122. 122.
    B. Meyer and A. Ernst. Integrating ACO and constraint propagation. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 166–177. Springer, Berlin, Germany, 2004.Google Scholar
  123. 123.
    R. Michel and M. Middendorf. An island model based ant system with lookahead for the shortest supersequence problem. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer Science, pages 692–701. Springer, Berlin, Germany, 1998.Google Scholar
  124. 124.
    S. Mikki and A. Kishk. Investigation of the quantum particle swarm optimization technique for electromagnetic applications. In 2005 IEEE Antennas and Propagation Society International Symposium, volume 2A, pages 45–48, 2005.CrossRefGoogle Scholar
  125. 125.
    N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems, 16:937–946, 2000.CrossRefGoogle Scholar
  126. 126.
    J. Moore and R. Chapman. Application of particle swarm to multiobjective optimization. Department of Computer Science and Software Engineering, Auburn University, 1999.Google Scholar
  127. 127.
    J. D. Moss and C. G. Johnson. An ant colony algorithm for multiple sequence alignment in bioinformatics. In D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors, Artificial Neural Networks and Genetic Algorithms, pages 182–186. Springer, Berlin, Germany, 2003.Google Scholar
  128. 128.
    G. L. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, New York, 1988.Google Scholar
  129. 129.
    S. Nouyan, R. Ghizzioli, M. Birattari, and M. Dorigo. An insect-based algorithm for the dynamic task allocation problem. Künstliche Intelligenz, 4:25–31, 2005.Google Scholar
  130. 130.
    G. Onwubolu and M. Clerc. Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization. International Journal of Production Research, 42(3/01):473–491, February 2004.Google Scholar
  131. 131.
    P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal of Production Research, 26:297–307, 1988.CrossRefGoogle Scholar
  132. 132.
    E. Ozcan and C.K. Mohan. Analysis of a simple particle swarm optimization system. In Intelligent Engineering Systems Through Artificial Neural Networks, pages 253–258, 1998.Google Scholar
  133. 133.
    C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization—Algorithms and Complexity. Dover Publications, Inc., New York, NY, 1982.zbMATHGoogle Scholar
  134. 134.
    R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4):321–332, 2002.CrossRefGoogle Scholar
  135. 135.
    D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on Evolutionary Computation, 10(4):440–458, August 2006.Google Scholar
  136. 136.
    K. Parsopoulos and M. Vrahatis. Particle swarm optimization method for constrained optimization problems. Intelligent Technologies—Theory and Applications: New Trends in Intelligent Technologies, 76:214–220, 2002.Google Scholar
  137. 137.
    K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied Computing (SAC 2002), pages 603–607. Madrid, Spain, ACM Press, 2002.Google Scholar
  138. 138.
    K. Parsopoulos and M. Vrahatis. On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):211–224, June 2004.Google Scholar
  139. 139.
    A. Pétrowski. A clearing procedure as a niching method for genetic algorithms. In Proceedings of the 3rd IEEE International Conference on Evolutionary Computation, pages 798–803, 1996.Google Scholar
  140. 140.
    G. Pulido and C. Coello Coello. A constraint-handling mechanism for particle swarm optimization. In Proc. of the 2004 IEEE Congress on Evolutionary Computation, pages 1396–1403. IEEE Press, 2004.Google Scholar
  141. 141.
    G. T. Pulido and C. Coello Coello. A constraint-handling mechanism for particle swarm optimization. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pages 1396–1403, Portland, Oregon, 20-23 June 2004. IEEE Press.Google Scholar
  142. 142.
    A. P. Engelbrecht, R. Brits and F. van den Bergh. A iching particle swarm optimizer. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning 2002 (SEAL 2002), pages 692–696, 2002.Google Scholar
  143. 143.
    K. Rameshkumar, R. Suresh, and K. Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makespan. In First International Conference of Advances in Natural Computation, pages 572–581, 2005.Google Scholar
  144. 144.
    C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems. John Wiley & Sons, Inc., New York, NY, 1993.Google Scholar
  145. 145.
    M. Reimann, K. Doerner, and R. F. Hartl. D-ants: Savings based ants divide and conquer the vehicle routing problems. Computers & Operations Research, 31(4):563–591, 2004.zbMATHCrossRefGoogle Scholar
  146. 146.
    C.W. Reynolds. Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 21(4):25–34, 1987.CrossRefMathSciNetGoogle Scholar
  147. 147.
    T. Richer and T. Blackwell. The Lévy particle swarm. In Congress on Evolutionary Computation (CEC 2006), pages 808– 815. IEEE press, 2006.Google Scholar
  148. 148.
    J. Riget and J. Vesterstroem. A diversity-guided particle swarm optimizer—the ARPSO. Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002.Google Scholar
  149. 149.
    R. Rucker. Seek! Four Walls Eight Windows, New York, 1999.Google Scholar
  150. 150.
    A. Salman, A. Imtiaz, and S. Al-Madani. Particle swarm optimization for task assignment problem. In IASTED International Conference on Artificial Intelligence and Applications (AIA 2001), Marbella, Spain, 2001.Google Scholar
  151. 151.
    M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara. Effective methods for scalable and continuous media streaming on peer-to-peer networks. European Transactions on Telecommunications, 15:549–558, 2004.CrossRefGoogle Scholar
  152. 152.
    M. Settles, B. Rodebaugh, and T. Soule. Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network. In Genetic and Evolutionary Computation Conference 2003 (GECCO 2003), pages 151–152, Chicago, USA, 2003.Google Scholar
  153. 153.
    A. Shmygelska, R. Aguirre-Hernàndez, and H. H. Hoos. An ant colony optimization algorithm for the 2D HP protein folding problem. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 40–52. Springer, Berlin, Germany, 2002.Google Scholar
  154. 154.
    A. Shmygelska and H. H. Hoos. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics, 6(30):1–22, 2005.Google Scholar
  155. 155.
    M. Reyes Sierra and C. Coello Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3):287–308, 2006.MathSciNetGoogle Scholar
  156. 156.
    C. A. Silva, T. A. Runkler, J. M. Sousa, and R. Palm. Ant colonies as logistic processes optimizers. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of Lecture Notes in Computer Science, pages 76–87. Springer, Berlin, Germany, 2002.Google Scholar
  157. 157.
    K. Socha. ACO for continuous and mixed-variable optimization. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 25–36. Springer, Berlin, Germany, 2004.Google Scholar
  158. 158.
    K. Socha and C. Blum. An ant colony optimization algorithm for continuous optimization: An application to feed-forward neural network training. Neural Computing & Applications, 2007. In press.Google Scholar
  159. 159.
    K. Socha and M. Dorigo. Ant colony optimization for continuous domains. European Journal of Operational Research, 2007. In press.Google Scholar
  160. 160.
    K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In S. Cagnoni, J. J. Romero Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, E. Marchiori, J.-A. Meyer, M. Middendorf, and G. R. Raidl, editors, Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003, volume 2611 of Lecture Notes in Computer Science, pages 334–345. Springer, Berlin, Germany, 2003.Google Scholar
  161. 161.
    C. Solnon. Ant can solve constraint satisfaction problems. IEEE Transactions on Evolutionary Computation, 6(4):347–357, 2002.CrossRefGoogle Scholar
  162. 162.
    T. Stützle. An ant approach to the flow shop problem. In Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), pages 1560–1564. Verlag Mainz, Aachen, Germany, 1998.Google Scholar
  163. 163.
    T. Stützle and M. Dorigo. A short convergence proof for a class of ACO algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358–365, 2002.CrossRefGoogle Scholar
  164. 164.
    T. Stützle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8):889–914, 2000.CrossRefGoogle Scholar
  165. 165.
    P.N. Suganthan. Particle swarm optimiser with neighbourhood operator. In Congress on Evolutionary Computation (CEC 1999), pages 1958–1962, Washington, USA, 1999.Google Scholar
  166. 166.
    T.-Y. Sun, S.-T. Hsieh, H.-M. Wang, and C.-W. Lin. Floorplanning based on particle swarm optimization. In IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures 2006, pages 5–10. IEEE Press, 2006.Google Scholar
  167. 167.
    G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. Response threshold reinforcement and division of labour in insect societies. Proceedings: Biological Sciences, 265(1393):327–332, 1998.Google Scholar
  168. 168.
    I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection, 2003.Google Scholar
  169. 169.
    R. Unger and J. Moult. Finding the lowest free-energy conformation of a protein is an NP-hard problem: Proofs and implications. Bulletin of Mathematical Biology, 55(6):1183–1198, 1993.zbMATHGoogle Scholar
  170. 170.
    F. van den Bergh. Analysis of Particle Swarm Optimizers. PhD thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.Google Scholar
  171. 171.
    F. van den Bergh and A.P. Engelbrecht. A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Compu., 8:225–239, Jun. 2004.Google Scholar
  172. 172.
    F. van den Bergh and A.P. Engelbrecht. A study of particle swarm optimization particle trajectories. Information Sciences, 176:937–971, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  173. 173.
    K. Veeramachaneni, T. Peram, C. Mohan, and L. Osadciw. Optimization using particle swarm with near neighbor interactions. In Proc. of Genetic and Evolutionary Computation Conference, pages 110 – 121, Chicago, Illinois, 2003.Google Scholar
  174. 174.
    G. K. Venayagamoorthy. Optimal control parameters for a UPFC in a multimachine using PSO. In Proceedings of the 13th International Intelligent Systems Application to Power Systems 2005, pages 488–493, 2005.Google Scholar
  175. 175.
    M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs, NJ, 1993.zbMATHGoogle Scholar
  176. 176.
    M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, and A. Elmaghraby. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):289–301, June 2004.Google Scholar
  177. 177.
    C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  178. 178.
    E. O. Wilson. The relation between caste ratios and division of labour in the ant genus phedoile. Behavioral Ecology and Sociobiology, 16(1):89–98, 1984.CrossRefGoogle Scholar
  179. 179.
    X. Xie, W. Zhang, and Z. Yang. A dissipative particle swarm optimization. In Proc. Congr. Evol. Comput. 2002 (CEC 2002), pages 1456–1461. IEEE Press, 2002.Google Scholar
  180. 180.
    H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15(4):1232–1239, November 2001.Google Scholar
  181. 181.
    X. Yu and B. Ram. Bio-inspired scheduling for dynamic job shops with flexible routing and sequence-dependent setups. International Journal of Production Research, 44(22):4793–4813, 2006.zbMATHCrossRefGoogle Scholar
  182. 182.
    W. Zha and G. K. Venayagamoorthy. Neural networks based non-uniform scalar quantizer design with particle swarm optimization. In Proceedings 2005 IEEE Swarm Intelligence Symposium (SIS 2005), pages 143–148. IEEE Press, 2005.Google Scholar
  183. 183.
    M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research, 131(1–4):373–395, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Blum
    • 1
  • Xiaodong Li
    • 2
  1. 1.ALBCOM Research GroupUniversitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations