Frequency Modulation Atomic Force Microscopy in Liquids

  • Suzanne P. Jarvis
  • John E. Sader
  • Takeshi Fukuma
Part of the Nano Science and Technolgy book series (NANO)


Frequency modulation atomic force microscopy is a sensitive and quantitative dynamic technique, which utilizes the change in resonance frequency of a cantilever to detect variations in the interaction force between the cantilever tip and the sample of interest. Although it has been used extensively in ultrahigh vacuum, it is rarely used in liquids. Here we explore the application of the technique in the liquid environment, covering various experimental implementations of the technique and its theoretical foundations. In addition, we describe a number of applications that demonstrate the potential of the technique in liquids and highlight future prospects


Resonance Frequency Interaction Force Dissipative Force Sample Separation DPPC Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht TR, Grütter P, Horne D, Ruger D (1991) J Appl Phys 69:668CrossRefGoogle Scholar
  2. 2.
    Giessibl FJ (1995) Science 267:68CrossRefGoogle Scholar
  3. 3.
    Garcia R, Perez R (2002) Surf Sci Rep 47:197CrossRefGoogle Scholar
  4. 4.
    Giessibl FJ (2003) Rev Mod Phys 75:949CrossRefGoogle Scholar
  5. 5.
    Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Nature 446:64CrossRefGoogle Scholar
  6. 6.
    Giessibl FJ (1997) Phys Rev B 56:16010CrossRefGoogle Scholar
  7. 7.
    Martin Y, Williams CC, Wickramasinghe HK (1987) J Appl Phys 61:4723CrossRefGoogle Scholar
  8. 8.
    Lee M, Jhe W (2006) Phys Rev Lett 97:036104CrossRefGoogle Scholar
  9. 9.
    Sader JE, Jarvis SP (2004) Appl Phys Lett 84:1801CrossRefGoogle Scholar
  10. 10.
    Jarvis SP, Uchihashi T, Ishida T, Tokumoto H, Nakayama Y (2000) J Phys Chem B 26:6091CrossRefGoogle Scholar
  11. 11.
    Jarvis SP, Oral A, Weihs TP, Pethica JB (1993) Rev Sci Instrum 64:3515CrossRefGoogle Scholar
  12. 12.
    Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147CrossRefGoogle Scholar
  13. 13.
    Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H (2005) Rev Sci Instrum 76:053704CrossRefGoogle Scholar
  14. 14.
    Fukuma T, Higgins MJ, Jarvis SP (2007) Phys Rev Lett 98:106101CrossRefGoogle Scholar
  15. 15.
    Giessibl FJ (2001) Appl Phys Lett 78:123CrossRefGoogle Scholar
  16. 16.
    Sader JE, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y, Jarvis SP (2005) Nanotechnology 16:S94CrossRefGoogle Scholar
  17. 17.
    Humphris ADL, Tamayo J, Miles MJ (2000) Langmuir 16:7891CrossRefGoogle Scholar
  18. 18.
    Kageshima M, Jensenius H, Dienwiebel M, Nakayama Y, Tokumoto H, Jarvis SP, Oosterkamp TH (2002) Appl Surf Sci 188:440CrossRefGoogle Scholar
  19. 19.
    Umeda N, Ishizaki S, Uwai H (1991) J Vac Sci Technol B 9:1318CrossRefGoogle Scholar
  20. 20.
    Ratcliff GC, Erie DA, Superfine R (1998) Appl Phys Lett 72:1911CrossRefGoogle Scholar
  21. 21.
    Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A (2006) Appl Phys Lett 88:193109CrossRefGoogle Scholar
  22. 22.
    Kawakatsu H, Kawai S, Kobayashi D, Kitamura S, Meguro S (2006) e-J Surf Sci Nanotechnol 4:110CrossRefGoogle Scholar
  23. 23.
    Giessibl FJ (1999) Appl Surf Sci 140:352CrossRefGoogle Scholar
  24. 24.
    Meyer G, Amer NM (1988) Appl Phys Lett 53:1045CrossRefGoogle Scholar
  25. 25.
    Fukuma T, Jarvis SP (2006) Rev Sci Instrum 77:043701CrossRefGoogle Scholar
  26. 26.
    Sarid D (1994) Scanning force microscopy with applications to electronic, magnetic and atomic forces. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Okajima T, Sekiguchi H, Arakawa H, Ikai A (2003) Appl Surf Sci 210:68CrossRefGoogle Scholar
  28. 28.
    Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) Appl Phys Lett 87:034101CrossRefGoogle Scholar
  29. 29.
    Kobayashi K, Yamada H, Matsushige K (2002) Appl Surf Sci 188:430CrossRefGoogle Scholar
  30. 30.
    Jarvis SP, Ishida T, Uchihashi T, Nakayama Y, Tokumoto H (2001) Appl Phys A 72:S129CrossRefGoogle Scholar
  31. 31.
    Uchihashi T, Higgins MJ, Yasuda S, Jarvis SP, Akita S, Nakayama Y, Sader JE (2004) Appl Phys Lett 85:3575CrossRefGoogle Scholar
  32. 32.
    Uchihashi T, Higgins MJ, Sader JE, Jarvis SP (2005) Nanotechnology 16:S40CrossRefGoogle Scholar
  33. 33.
    Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) Appl Phys Lett 86:193108CrossRefGoogle Scholar
  34. 34.
    Erlandsson R, Hadziioannou G, Mate CM, McClelland GM, Chiang S (1988) J Chem Phys 89:5190CrossRefGoogle Scholar
  35. 35.
    Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Science 243:1586CrossRefGoogle Scholar
  36. 36.
    Tamayo J, Humphris ADL, Owen RJ, Miles MJ (2001) Biophys J 81:526CrossRefGoogle Scholar
  37. 37.
    Sekiguchi H, Okajima T, Arakawa H, Maeda S, Takashima A, Ikai A (2003) Appl Surf Sci 210:61CrossRefGoogle Scholar
  38. 38.
    Okajima T, Tokumoto H (2004) Jpn J Appl Phys 43:4634CrossRefGoogle Scholar
  39. 39.
    Ebeling D, Hölscher H, Anczykowski B (2006) Appl Phys Lett 89:203511CrossRefGoogle Scholar
  40. 40.
    Yang C-W, Hwang I-S, Chen YF, Chang CS, Tsai DP (2007) Nanotechnology 18:084009CrossRefGoogle Scholar
  41. 41.
    Morita S, Yamada H, Ando T (2007) Nanotechnology 18:08401CrossRefGoogle Scholar
  42. 42.
    Humphris ADL, Antognozzi M, McMaster TJ, Miles MJ (2002) Langmuir 18:1729CrossRefGoogle Scholar
  43. 43.
    Higgins MJ, Riener CK, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Nanotechnology 16:S85CrossRefGoogle Scholar
  44. 44.
    Higgins MJ, Sader JE, Jarvis SP (2006) Biophys J 90:640CrossRefGoogle Scholar
  45. 45.
    Higgins MJ, Polcik M, Fukuma T, Sader JE, Nakayama Y, Jarvis SP (2006) Biophys J 91:2532CrossRefGoogle Scholar
  46. 46.
    Fukuma T, Higgins MJ, Jarvis SP (2007) Biophys J 92:3603CrossRefGoogle Scholar
  47. 47.
    Groves JT, Boxer SG, McConnell HM (2000) J Phys Chem B 104:11409CrossRefGoogle Scholar
  48. 48.
    Ohki S, Arnold K (2000) Colloids Surf B 18:83CrossRefGoogle Scholar
  49. 49.
    Herbette L, Napolitano CA, McDaniel RV (1984) Biophys J 46:677CrossRefGoogle Scholar
  50. 50.
    Hermann TR, Jayaweera AR, Shamoo AE (1986) Biochemistry 25:5834CrossRefGoogle Scholar
  51. 51.
    Binder H, Zschörnig (2002) Chem Phys Lipids 115:39CrossRefGoogle Scholar
  52. 52.
    Berkowitz ML, Bostick DL, Pandit S (2006) 106:1527Google Scholar
  53. 53.
    Garcia-Manyes S, Oncins G, Sanz F (2005) Biophys J 89:1812CrossRefGoogle Scholar
  54. 54.
    Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Biophys J 85:1647CrossRefGoogle Scholar
  55. 55.
    Sader JE (2002) In: Encyclopedia of surface and colloid science. Dekker, New YorkGoogle Scholar
  56. 56.
    Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Phys Rev B 60:11051CrossRefGoogle Scholar
  57. 57.
    Abramowitz M, Stegun IA (1975) Handbook of mathematical functions. Dover, New YorkzbMATHGoogle Scholar
  58. 58.
    Dürig U (2000) Appl Phys Lett 76:1203CrossRefGoogle Scholar
  59. 59.
    Sader JE (1998) J Appl Phys 84:64CrossRefGoogle Scholar
  60. 60.
    Chon JWM, Mulvaney P, Sader JE (2000) J Appl Phys 87:3978CrossRefGoogle Scholar
  61. 61.
    Green CP, Sader JE (2005) Phys Fluids 17:073102MathSciNetCrossRefGoogle Scholar
  62. 62.
    Sader JE, Jarvis SP (2006) Phys Rev B 74:195424CrossRefGoogle Scholar
  63. 63.
    Holscher H, Gotsmann B, Allers W, Schwarz UD, Fuchs H, Wiesendanger R (2001) Phys Rev B 64:075402CrossRefGoogle Scholar
  64. 64.
    Patil S, Matei G, Oral A, Hoffmann PM (2006) Langmuir 22:6485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Suzanne P. Jarvis
    • 1
  • John E. Sader
    • 2
  • Takeshi Fukuma
    • 3
  1. 1.Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfieldIreland
  2. 2.Department of Mathematics and StatisticsThe University of MelbourneVictoria Australia
  3. 3.Department of PhysicsKanazawa UniversityKakuma-machiJapan

Personalised recommendations