Advertisement

Guided Static Analysis

  • Denis Gopan
  • Thomas Reps
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4634)

Abstract

In static analysis, the semantics of the program is expressed as a set of equations. The equations are solved iteratively over some abstract domain. If the abstract domain is distributive and satisfies the ascending-chain condition, an iterative technique yields the most precise solution for the equations. However, if the above properties are not satisfied, the solution obtained is typically imprecise. Moreover, due to the properties of widening operators, the precision loss is sensitive to the order in which the state-space is explored.

In this paper, we introduce guided static analysis, a framework for controlling the exploration of the state-space of a program. The framework guides the state-space exploration by applying standard static-analysis techniques to a sequence of modified versions of the analyzed program. As such, the framework does not require any modifications to existing analysis techniques, and thus can be easily integrated into existing static-analysis tools.

We present two instantiations of the framework, which improve the precision of widening in (i) loops with multiple phases and (ii) loops in which the transformation performed on each iteration is chosen non-deterministically.

Keywords

Abstract State Outgoing Edge Reachable State Program Transformer Program Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnara, R., Hill, P., Zaffanella, E.: Widening operators for powerset domains. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min’e, A., Monniaux, D., Rival, X.: Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software. In: The Essence of Computation: Complexity, Analysis, Transformation, pp. 85–108 (2002)Google Scholar
  4. 4.
    Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Int. Conf. on Formal Methods in Prog. and their Appl., pp. 128–141 (1993)Google Scholar
  5. 5.
    Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for computing fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp. 269–282 (1979)Google Scholar
  7. 7.
    Das, M., Lerner, S., Seigle, M.: Esp: Path-sensitive program verification in polynomial time. In: PLDI, pp. 57–68 (2002)Google Scholar
  8. 8.
    Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy interation on relational domains. In: ESOP (2007)Google Scholar
  9. 9.
    Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PLDI, pp. 213–223 (2005)Google Scholar
  10. 10.
    Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-widening for multi-process systems. In: POPL (2005)Google Scholar
  13. 13.
    Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. FMSD 11(2), 157–185 (1997)Google Scholar
  14. 14.
    Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70 (2002)Google Scholar
  15. 15.
    Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown systems (2004), http://www.cs.wisc.edu/wpis/wpds++/
  16. 16.
    Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 3–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Denis Gopan
    • 1
  • Thomas Reps
    • 1
    • 2
  1. 1.University of Wisconsin 
  2. 2.GrammaTech, Inc. 

Personalised recommendations