Advertisement

Applications of Quantitative Microscopy in Studies of Plant Surface Microbiology

  • Frank B. Dazzo

Most of this chapter describes the author’s development and utilization of quantitative microscopy in studies of plant surface microbiology. The majority of this work has been done to gain a better understanding of the Rhizobium- legume root-nodule symbiosis.Various types of microscopy have been employed, including brightfield, phase-contrast, Nomarski-interference contrast, polarized light, real-time and time-lapse video, darkfield, conventional and laser scanning confocal epifluorescence, scanning electron, transmission electron, and field-emission scanning/transmission electron microscopies combined with visual counting techniques and manual interactive applications of image analysis.More recently, the author has led a team of scientists to develop a new generation of innovative, customized image analysis software designed specifically to analyze digital images of microbial populations and communities and extract all the informative, quantitative data of in situ microbial ecology from them at spatial scales relevant to the microbes themselves. We have begun to apply this new computer-assisted imaging technology to the fascinating field of plant surface microbiology. The chapter includes many figures that exemplify how the awesome resolving power of the microscope has significantly enhanced our understanding of plant surface microbiology, and richly illustrates how this topic area is even more enhanced with the added dimension of quantitation using computer-assisted digital image analysis.

Keywords

Root Hair White Clover Infection Thread Clover Root Quantitative Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  1. Abe M, Sherwood JE, Hollingsworth RI, Dazzo FB (1984) Stimulation of clover root hair infection by lectin-binding oligosaccharides from the capsular and extracellular polysaccharides of Rhizobium trifolii. J Bacteriol 160:517-520PubMedGoogle Scholar
  2. Bishop P, Dazzo FB, Applebaum E, Maier R, Brill W (1977) Intergeneric transfer of sym-biotic genes from Rhizobium trifolii to Azotobacter vinelandii. Science 198:938-940CrossRefPubMedGoogle Scholar
  3. Bono JJ, Riond J, Nicolaou KC, Bockovich NJ, Estevez VA, Cullimore JV, Ranjeva R (1995) Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J 7:253-260CrossRefPubMedGoogle Scholar
  4. Callaham D, Torrey J (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59:1647-1664Google Scholar
  5. Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183-5191PubMedGoogle Scholar
  6. Crockard MA, Bjourson AJ, Cooper JE (1999) A new peroxidase cDNA from white clover: Its characterization and expression in root tissue challenged with homologous rhizo-bia, heterologous rhizobia or Pseudomonas syringae. Mol Plant-Microbe Interact 12:825-828CrossRefPubMedGoogle Scholar
  7. Crockard MA, Bjourson AJ, Dazzo FB, Cooper JE (2002) A white clover nodulin gene, dd23b, encoding a cysteine cluster protein (CCP), is expressed in roots during the very early stages of interaction with Rhizobium leguminosarum biovar trifolii and after treatment with chitolipooligosaccharide Nod factors. J Plant Res 115:439-447CrossRefPubMedGoogle Scholar
  8. Dazzo FB (1982) Leguminous root nodules. In: Burns R, Slater J (eds) Experimental microbial ecology. Blackwell, Cambridge, pp 431-446Google Scholar
  9. Dazzo FB, Hubbell DH (1975) Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl Microbiol 30:1017-1033PubMedGoogle Scholar
  10. Dazzo FB, Brill WJ (1977) Receptor sites on clover and alfalfa roots for Rhizobium. Appl Environ Microbiol 33:132-136PubMedGoogle Scholar
  11. Dazzo FB, Brill W (1978) Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol 62:18-21CrossRefPubMedGoogle Scholar
  12. Dazzo FB, Brill W (1979) Bacterial polysaccharide which binds Rhizobium trifolii to white clover root hairs. J Bacteriol 137:1362-1373PubMedGoogle Scholar
  13. Dazzo FB, Hrabak EM (1981) Presence of trifoliin A, a Rhizobium-binding lectin, in clover root exudate. J Supramol Struct Cell Biochem 16:133-138CrossRefPubMedGoogle Scholar
  14. Dazzo F, Hubbell DH (1982) Control of root hair infection. In: Broughton W (ed) Ecology of nitrogen fixation: vol II. Rhizobium. Oxford University Press, Oxford, pp 274-310Google Scholar
  15. Dazzo FB, Petersen MA (1989) Applications of computer-assisted image analysis for microscopic studies of the Rhizobium-legume symbiosis. Symbiosis 7:193-210Google Scholar
  16. Dazzo FB, Wright SF (1996) Production of anti-microbial antibodies and their use in immunofluorescence microscopy. In: Akkermans A, van Elsas J, de Bruijn F (eds) Mol-ecular microbial ecology manual. vol 4.12. Kluwer, Dordrecht, pp 1-27Google Scholar
  17. Dazzo FB, Wopereis J (2000) Unraveling the infection process in the Rhizobium-legume symbiosis by microscopy. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, UK, pp 295-347Google Scholar
  18. Dazzo FB, Napoli C, Hubbell DH (1976) Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl Environ Microbiol 32:166-177PubMedGoogle Scholar
  19. Dazzo FB, Yanke W, Brill W (1978) Trifoliin: a Rhizobium recognition protein from white clover. Biochim Biophys Acta 536:276-286Google Scholar
  20. Dazzo FB, Urbano MR, Brill WJ (1979) Transient appearance of lectin receptors on Rhi-zobium trifolii. Curr Microbiol 2:15-20CrossRefGoogle Scholar
  21. Dazzo FB, Truchet GL, Sherwood JE, Hrabak EM, Gardiol AE (1982) Alteration of the tri-foliin A-binding capsule of Rhizobium trifolii 0403 by enzymes released from clover roots. Appl Environ Microbiol 44:478-490PubMedGoogle Scholar
  22. Dazzo FB, Truchet G, Sherwood J, Hrabak E, Abe M, Pankratz HS (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48:1140-1150PubMedGoogle Scholar
  23. Dazzo FB, Hollingsworth RI, Abe M, Smith KB, Welsch M, Morris PJ, Philip-Hollings-worth S, Salzwedel JL, Castillo RM (1987) Rhizobium trifolii polysaccharides, oligosaccharides, and other metabolites affecting development and symbiotic infection of clover root hairs. In: Steffens G, Rumsey T (eds) Biomechanisms regulating growth and development: keys to progress. Beltsville Symposium XII on Agricultural Research. Kluwer, Dordrecht, pp 343-355Google Scholar
  24. Dazzo FB, Hollingsworth R, Philip-Hollingsworth S, Robeles M, Olen T, Salzwedel J, Djordjevic M, Rolfe B (1988) Recognition processes in the Rhizobium trifolii-white clover symbiosis. In: Bothe H, de Bruijn F, Newton W (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, Germany, pp 431-436Google Scholar
  25. Dazzo F, Truchet G, Hollingsworth R, Hrabak E, Pankratz H, Philip-Hollingsworth S, Salzwedel J, Chapman K, Appenzeller L, Squartini A, Gerhold D, Orgambide G (1991) Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J Bacteriol 173:5371-5384PubMedGoogle Scholar
  26. Dazzo FB, Mateos P, Orgambide G, Philip-Hollingsworth S, Squartini A, Subba-Rao NS, Pankratz HS, Baker D, Hollingsworth R, Whallon J (1993) The infection process in the Rhizobium-legume symbiosis and visualization of rhizoplane microorganisms by laser scanning confocal microscopy. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, pp 259-262Google Scholar
  27. Dazzo FB, Orgambide G, Philip-Hollingsworth S, Hollingsworth RI, Ninke K, Salzwedel JL (1996a) Modulation of development, growth dynamics, wall crystallinity, and infection thread formation in white clover root hairs by membrane chitolipooligo-saccharides from Rhizobium leguminosarum bv. trifolii. J Bacteriol 178:3621-3627PubMedGoogle Scholar
  28. Dazzo FB, Orgambide G, Philip-Hollingsworth S, Hollingsworth RI, Ninke K, Smith D, Mateos PF, Squartini A, Bjourson AJ, Cooper JE, Wopereis J (1996b) Involvement of membrane chitolipo-oligosaccharides in the Rhizobium-white clover symbiosis. In: Chordi-Corbo A, Martinez-Molina E, Mateos P, Carpio-Santos M (eds) Advances in the investigation on biological nitrogen fixation. Excma Diputacion Provincal De Salamanca, Salamanca, Spain, pp 29-33Google Scholar
  29. Dazzo FB, Joseph AR, Gomma AB, Yanni YG, Robertson GP (2003) Quantitative indices for the autecological biogeography of a Rhizobium endophyte of rice at macro and micro spatial scales. Symbiosis 35:147-158Google Scholar
  30. Diaz CL, Melchers LS, Hooykaas PJ, Lugtenberg BJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579-581CrossRefGoogle Scholar
  31. Diaz CL, Spaink HP, Kijne JW (2000) Heterologous rhizobial lipochitin and chitin oligomers induced cortical cell divisions in red clover roots transformed with the pea lectin gene. Molec Plant-Microbe Interact 13:268-276CrossRefGoogle Scholar
  32. Djordjevic MA, Gabriel DW, Rolfe BG (1987) Rhizobium: the refined parasite of legumes. Annu Rev Phytopathol 25:145-168CrossRefGoogle Scholar
  33. Fåhraeus G (1957) The infection of clover roots by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374-381PubMedGoogle Scholar
  34. Fernandez A, Hashsham S, Dollhopf D, Raskin L, Glagoleva O, Dazzo FB, Hickey R, Crid-dle C, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058-4067CrossRefPubMedGoogle Scholar
  35. Gerhold DL, Dazzo FB, Gresshoff PM (1985) Selective removal of seedling root hairs for studies of the Rhizobium-legume symbiosis. J Microbiol Meth 4:95-102CrossRefGoogle Scholar
  36. Hashsham S, Fernandez A, Dollhopf S, Dazzo FB, Hickey R, Tiedje JM, Criddle CS (2000) Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl Environ Micro-biol 66:4050-4057CrossRefGoogle Scholar
  37. Hirsch A (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodula-tion. Curr Opin Plant Biol 2:320-326CrossRefPubMedGoogle Scholar
  38. Hollingsworth RI, Abe M, Sherwood JE, Dazzo FB (1984) Bacteriophage-induced acidic heteropolysaccharide lyases that convert acidic heteropolysaccharides of Rhizobium trifolii into oligosaccharide units. J Bacteriol 160:510-516PubMedGoogle Scholar
  39. Hollingsworth RI, Dazzo FB, Hallenga K, Musselman B (1988) The complete structure of the trifoliin A lectin-binding capsular polysaccharide of Rhizobium trifolii 843. Car-bohydr Res 172:97-112Google Scholar
  40. Hollingsworth RI, Squartini A, Philip-Hollingsworth S, Dazzo FB (1989) Root hair deforming and nodule initiating factors from Rhizobium trifolii. In: Lugtenberg B (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Hei-delberg New York, pp 387-393Google Scholar
  41. Holt JJ, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determi-native bacteriology 9th edn. Williams and Wilkins, Baltimore, 787 ppGoogle Scholar
  42. Hrabak EM, Urbano MR, Dazzo FB (1981) Growth-phase dependent immunodetermi-nants of Rhizobium trifolii lipopolysaccharide which bind trifoliin A, a white clover lectin. J Bacteriol 148:697-711PubMedGoogle Scholar
  43. Hrabak EM, Truchet GL, Dazzo FB, Govers F (1985) Characterization of the anomalous infection and nodulation of subterranean clover roots by Rhizobium leguminosarum 1020. J Gen Microbiol 131:3287-3302PubMedGoogle Scholar
  44. Jiminez-Zurdo J, Mateos P, Dazzo FB, Martinez-Molina E (1996) Cell-bound cellulase and polygalacturonase production by Rhizobium and Bradyrhizobium species. Soil Biol Biochem 28:917-921CrossRefGoogle Scholar
  45. Leigh J, Reed J, Hanks J, Hirsch A, Walker G (1987) Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51:579-587CrossRefPubMedGoogle Scholar
  46. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosaccharide signal. Nature 344:781-784CrossRefPubMedGoogle Scholar
  47. Li D, Hubbell DH (1969) Infection thread formation as a basis for nodulation specificity in Rhizobium-strawberry clover associations. Can J Microbiol 15:1133-1136PubMedCrossRefGoogle Scholar
  48. Liu J, Dazzo FB, Glagoleva O, Yu B, Jain A (2001) CMEIAS„: a computer-aided system for image analysis of microbial communities. Microbial Ecology 41:173-194, 42:215PubMedGoogle Scholar
  49. Lopez-Lara I, Orgambide G, Dazzo FB, Olivares J, Toro N (1993) Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from Acacia nodules. J Bacteriol 175:2826-2832PubMedGoogle Scholar
  50. Lopez-Lara I, Orgambide G, Dazzo FB, Olivares J, Toro N (1995) Surface polysaccharide mutants of Rhizobium sp. (Acacia) strain GRH2: major requirement of lipopolysac-charide and acidic exopolysaccharide for successful invasion of Acacia nodules and host range determination. Microbiology (UK) 141:573-581CrossRefGoogle Scholar
  51. Mateos P, Jiminez J, Chen J, Squartini A, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium trifolii. Appl Environ Microbiol 58:1816-1822PubMedGoogle Scholar
  52. Mateos P, Baker D, Philip-Hollingsworth S, Squartini A, Peruffo A, Nuti M, Dazzo FB (1995) Direct in situ identification of cellulose microfibrils associated with Rhizo-bium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microbiol 41:202-207CrossRefGoogle Scholar
  53. Mateos PF, Zurdo J, Molina-Blanco J, Velazquez A, Dazzo FB, Martinez-Molina E (1996) Implication of cellulase production by Rhizobium in the establishment of the sym-biosis with legumes. In: Chordi-Corbo A, Martinez-Molina E, Mateos P, Capri-Santos M (eds) Advances in the investigation on biological nitrogen fixation, Excma Diputa-cion Provincal De Salamanca, Salamanca, Spain, pp 45-48Google Scholar
  54. Mateos P, Baker DL, Petersen M, Velázquez E, Jiménez-Zurdo JI, Martínez-Molina E, Squartini A, Orgambide G, Hubbell DH, Dazzo FB (2001) Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can J Microbiol 47:475-487CrossRefPubMedGoogle Scholar
  55. McDermott TR, Dazzo FB (2002) Use of fluorescent antibodies for studying the ecology of soil- and plant-associated microbes. In: Hurst C, Crawford RC, Knudsen GR, McIn-erney MJ, Stetzenbach LD (eds), Manual of environmental microbiology, Chap. 28, American Society for Microbiology Press, Washington, DC, pp 615-626Google Scholar
  56. McKhann HI, Hirsch AM (1993) In situ localization of specific mRNAs in plant tissues. In: Thompson J, Glick B (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 173-205Google Scholar
  57. Munoz J, Coronado C, Perez-Hormeache J, Kondorosi A, Ratet P, Palomares AJ (1998) MsPG3, a Medicago sativa polygalacturonase gene expressed during the alfalfa-Rhi-zobium meliloti interaction. Proc Natl Acad Sci USA 95:9686-9692Google Scholar
  58. Murray CJ (2002) Sampling and data analysis for environmental microbiology. In: Man-ual of environmental microbiology, American Society for Microbiology Press, Wash-ington, DC, pp 166-177Google Scholar
  59. Napoli C, Hubbell DH (1976) Ultrastructure of Rhizobium-induced infection threads in clover root hairs. Appl Microbiol 30:1003-1009Google Scholar
  60. Napoli C, Dazzo FB, Hubbell DH (1975a) Production of cellulose microfibrils by Rhizo-bium. Appl Microbiol 30:123-131PubMedGoogle Scholar
  61. Napoli CA, Dazzo FB, Hubbell DH (1975b) Ultrastructure of infection and common anti-gen relationships in the Rhizobium-Aeschynomene symbiosis. In: Vincent J (ed) Pro-ceedings of the 5th Australian Legume Nodulation Conference. Brisbane, Australia, pp 35-37Google Scholar
  62. Nutman P, Doncaster C, Dart P (1973) Infection of Clover by Root-Nodule Bacteria. British Film Institute, LondonGoogle Scholar
  63. Orgambide G, Philip-Hollingsworth S, Cargill L, Dazzo FB (1992) Evaluation of acidic heteropolysaccharide structures in Rhizobium leguminosarum biovars altered in nodulation genes and host range. Mol Plant-Microbe Interact 5:482-488Google Scholar
  64. Orgambide GG, Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (1994) Flavone-enhanced accumulation and symbiosis-related biological activity of a diglycosyl dia-cylglycerol membrane glycolipid from Rhizobium leguminosarum biovar trifolii. J Bacteriol 176:4338-4347PubMedGoogle Scholar
  65. Orgambide G, Lee J, Hollingsworth R, Dazzo FB (1995) Structurally diverse chi-tolipooligosaccharide Nod factors accumulate primarily in membranes of wild type Rhizobium leguminosarum bv. trifolii. Biochemistry 34:3832-3840CrossRefPubMedGoogle Scholar
  66. Orgambide G, Philip-Hollingsworth S, Mateos P, Hollingsworth RI, Dazzo FB (1996) Sub-nanomolar concentrations of membrane chitolipooligosaccharides from Rhizobium leguminosarum biovar trifolii are fully capable of eliciting symbiosis-related responses on white clover. Plant Soil 186:93-98CrossRefGoogle Scholar
  67. Parniske M, Zimmermann C, Cregan PB, Werner D (1990) Hypersensitive reaction of nodule cells in the Glycine max sp. /Bradyrhizobium japonicum symbiosis occurs at the genotype-specific level. Botanica Acta 103:143-148Google Scholar
  68. Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid inducible resistance to the phy-toalexine glyceollin in soybean rhizobia. J Bacteriol 173:3432-3439PubMedGoogle Scholar
  69. Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is depen-dent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310-4318CrossRefPubMedGoogle Scholar
  70. Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (1989a) Host-range related struc-tural features of the acidic extracellular polysaccharides of Rhizobium trifolii and Rhizobium leguminosarum. J Biol Chem 264:1461-1466PubMedGoogle Scholar
  71. Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB, Djordjevic M, Rolfe BG (1989b) The effect of interspecies transfer of Rhizobium host-specific nodulation genes on acidic polysaccharide structure and in situ binding by host lectin. J Biol Chem 264:5710-5714PubMedGoogle Scholar
  72. Philip-Hollingsworth S, Hollingsworth RI, Dazzo F (1991) N-acetylglutamic acid: an extracellular Nod signal of Rhizobium trifolii ANU843 which induces root hair branching and nodule-like primordia in white clover roots. J Biol Chem 266:16854-16858PubMedGoogle Scholar
  73. Philip-Hollingsworth S, Orgambide G, Bradford J, Smith D, Hollingsworth R, Dazzo FB (1995) Mutation or increased copy number of nodE has no effect on the spectrum of chitolipooligosaccharide Nod factors made by Rhizobium leguminosarum bv. trifolii. J Biol Chem 270:20968-20977CrossRefPubMedGoogle Scholar
  74. Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (1997) Structural requirements of chitolipooligosaccharides from Rhizobium leguminosarum bv. trifolii for uptake and mitogenic activity in legume roots as revealed by synthetic analogs and bioreactive fluorescent probes. J Lipid Res 38:1229-1241PubMedGoogle Scholar
  75. Reddy PM, Ladha JK, So R, Hernandez R, Dazzo FB, Angeles O, Ramos M, de Bruijn F (1997) Rhizobial communication with rice: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81-98CrossRefGoogle Scholar
  76. Reddy C, Liu J, Wadekar M, Prabhu A, Trione D, Marshall E, Zurdo J, Liu F-I, Urbance J, Dazzo FB (2002a) New features of CMEIAS innovative software for computer-assisted microscopy of microorganisms and their ecology. 2002 Ann. Mtg. , Long-Term Eco-logical Research in Row-Crop Agriculture, KBS-LTER Site. Abstract at <http://Iter. kbs. msu. edu/Meetings/2002_All_Inv_Meeting/Abstracts/Reddy_etal2. htm>
  77. Reddy C, Liu F-I, Zurdo J, Dazzo FB (2002b) A new CMEIAS color recognition program for digital microbial ecology. 2002 Ann. Mtg. , Long-Term Ecological Research in Row-Crop Agriculture, KBS-LTER Site. Abstract at <http://Iter.kbs. msu. edu/Meetings/ 2002_All_Inv_Meeting/Abstracts/Reddy_etal. htm>
  78. Robertson P (2002) GS+ Geostatistics for the environmental sciences. Gamma Design Software, http://www.gammadesign. com
  79. Rolfe BG, Carlson RW, Ridge RW, Dazzo FB, Mateos PF, Pankhurst CE (1996) Defective infection and nodulation of clovers by exopolysaccharide mutants of Rhizobium legu-minosarum bv. trifolii. Aust J Plant Physiol 23:285-303CrossRefGoogle Scholar
  80. Salzwedel J, Dazzo FB (1993) Sym nod gene influence on elicitation of peroxidase activ-ity from white clover and pea roots by Rhizobia and their cell-free supernatants. Mol Plant-Microbe Interact 6:127-134PubMedGoogle Scholar
  81. Sanchez B, Coronado C, Philip-Hollingsworth S, Dazzo FB, Palomares A (1997) Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv. trifolii. Mol Gen Genet 255:131-140CrossRefGoogle Scholar
  82. Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification and local-ization of Azospirillum in the rhizosphere of wheat using fluorescence-labeled mon-oclonal antibodies and confocal scanning laser microscopy. J Microsc 171:173-177Google Scholar
  83. Sherwood JE, Truchet GL, Dazzo FB (1984a) Effect of nitrate supply on in vivo synthesis and distribution of trifoliin A, a Rhizobium-trifolii binding lectin, in Trifolium repens seedlings. Planta 162:540-547CrossRefGoogle Scholar
  84. Sherwood JE, Vasse JM, Dazzo FB, Truchet GL (1984b) Development and trifoliin A-binding ability of the capsule of Rhizobium trifolii. J Bacteriol 159:145-152PubMedGoogle Scholar
  85. Smit G, Swart S, Lugtenberg B, Kijne JW (1992) Molecular mechanisms of attachment of bacteria to plant roots. Mol Microbiol 6:2897-2903CrossRefPubMedGoogle Scholar
  86. Subba-Rao NS, Mateos PF, Baker D, Pankratz HS, Palma J, Dazzo FB, Sprent JI (1995) The unique root-nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans (L. f. ) Druce. Planta 196:311-320CrossRefGoogle Scholar
  87. Towner H (1999) EcoStat ecological analysis program for windows, Ver. 1. 03, Trinity Software, Campton, NHGoogle Scholar
  88. Truchet GL, Sherwood JE, Pankratz HS, Dazzo FB (1986) Clover root exudate contains a particulate form of the lectin, trifoliin A, which binds Rhizobium trifolii. Physiol Plant 66:575-582CrossRefGoogle Scholar
  89. Vance CP (1983) Rhizobium infection and nodulation: A beneficial plant disease? Annu Rev Microbiol 37:399-424CrossRefPubMedGoogle Scholar
  90. van Rhijn P, Goldberg R, Hirsch A1 (1998) Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene. Plant Cell 10:1233-1249CrossRefPubMedGoogle Scholar
  91. van Workum WAT, van Slogeren S, van Brussel AA, Kijne JW (1998) Role of exopolysac-charides of Rhizobium leguminosarum bv. viciae as host-specific molecules required for infection thread formation during nodulation of Vicia sativa. Molec Plant-Microbe Interact 11:1233-1241CrossRefGoogle Scholar
  92. Vega-Hernández MC, Pérez-Galdona R, Dazzo FB, Jarabo-Lorenzo A, Alfayate MC, León-Barrios M (2001) Novel infection process in the indeterminate root nodule symbiosis between tagasaste (Chamaecytisus proliferus) and Bradyrhizobium sp. (Chamae-cytisus). New Phytol 150:707-721CrossRefGoogle Scholar
  93. Vernoud V, Journet EP, Barker DG (1999) MtENOD20, a Nod factor-inducible molecular marker for root cortical cell activation. Mol Plant-Microbe Interact 12:604-614CrossRefGoogle Scholar
  94. Wilcox CD, Dove SB, Doss-McDavid W, Greer DB (1997) UTHSCSA ImageTool„ Ver. 1. 27, http://www.uthscsa. edu/dig/itdesc. html, Univ. Texas Health Science Center, San Anto-nio, TX
  95. Yanni Y, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, deBruijn F, Stoltzfus J, Buckley D, Schmidt T, Mateos P, Ladha JK, Dazzo FB (1997) Nat-ural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99-114CrossRefGoogle Scholar
  96. Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Mar-tinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845-870Google Scholar
  97. Yao Y, Vincent JM (1976) Factors responsible for the curling and branching of clover root hair by Rhizobium. Plant Soil 45:1-16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frank B. Dazzo
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA

Personalised recommendations