Skip to main content

Plant-Insect-Pathogen Interactions on Local and Regional Scales

  • Chapter
Insects and Ecosystem Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 173))

Summary

In many plant communities, weeds are important drivers of ecosystem processes, but natural enemies may control their growth and population dynamics. These enemies may directly reduce plant growth by grazing or infection, or indirectly enhance plant susceptibility to other enemy species. The role of insects as vectors of plant pathogens has thereby often been underestimated but appears to be widespread and important. Crucial for the understanding of such plant–enemy interactions is the consideration of processes on local and regional scales. We analysed the effects of herbivore and pathogen attack and their interactions using the weed creeping thistle, Cirsium arvense, as a model system. Local thistle patches were limited by the thistles’ low competitive ability in secondary succession, by pathogens and insects and by the disturbance or management of habitats. The regional dynamics of C. arvense were mainly driven by human activities and showed a mosaic of increasing and decreasing local patches with low persistence. High patch turnover rates and subsequent small average patch sizes limited the success of herbivore populations.

Furthermore, we analysed thistle–herbivore–pathogen–parasitoid interactions on different spatial scales in a landscape context. Interactions between C. arvense and either insect herbivores or rust pathogens were related to landscape context at large spatial scales (3,000 m radius of landscape sector), whereas herbivore–parasitoid interactions were influenced at smaller scales (750 m). Hence, species at higher trophic levels appeared to have a smaller range of dispersal than those at lower levels. These marked spatial differences emphasize the need to consider both local and landscape management in biological control. In general, such an approach may help to explain the dynamics of plant populations in dependence on possible control by insects and pathogens which can affect the plants’ influence on ecosystem processes. However, the potential of facilitation among the plants’ antagonists via plant-mediated indirect interactions or with insects as vectors of pathogen spores and their dependence on species-specific spatial scales need much more experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. J Ecol 83: 887–889

    Article  Google Scholar 

  • Brodmann PA, Wilcox CV, Harrison S (1997) Mobile parasitoid may restrict the spatial spread of an insect outbreak. J Anim Ecol 66: 65–72

    Article  Google Scholar 

  • Brown VK, Gange AC (1990) Insect-herbivory below-ground. Adv Ecol Res 20:1–58 Burdon JJ, Marshall DR (1981) Biological control and the reproductive mode of weeds. J Appl Ecol 18: 649–658

    Google Scholar 

  • Chancellor RJ (1970) Biological background to the control of three perennial broad-leaved weeds. In: Proc 10th British Weed Control Conf, British Weed Control Council, London, pp 1114–1120

    Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111: 89–97

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230: 895–899

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (1989a) The relative importance of vertebrate and invertebrate herbivores in plant population dynamics. In: Bernays E (ed) Insect–plant interactions. CRC Press, Boca Raton, pp 45–71

    Google Scholar 

  • Crawley MJ (1989b) The success and failures of weed biocontrol using insects. Biocontrol News Inf 10: 213–223

    Google Scholar 

  • DeBach P (1964) Biological control of insect pests and weeds. Reinhold, New York

    Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422: 711–713

    Article  Google Scholar 

  • Denys C, Tscharntke T (2002) Plant–insect communities and predator–prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130: 315–324

    Article  Google Scholar 

  • DeRuiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strength, and stability in real ecosystems. Science 269: 1257–1260

    Article  CAS  Google Scholar 

  • Detling JK (1988) Grasslands and savannas: regulation of energy flow and nutrient cycling by herbivores. In: Pomeroy LR, Alberts JJ (eds) Concepts of entomology. Springer, Berlin Heidelberg New York, pp 131–148

    Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11: 255–260

    Article  CAS  PubMed  Google Scholar 

  • Dodd AP (1940) The biological control of prickly-pear in Australia. In: Whyte RO (ed) The control of weeds. Herbage Publ Ser Bull 27, Imperial Bureau of Pastures and Forage Crops, Aberystwyth, pp 131–143

    Google Scholar 

  • Donald WW (1994) The biology of Canada thistle (Cirsium arvense). Rev Weed Sci 6:77– 101

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5: 558–567

    Article  Google Scholar 

  • Dyer LA, Letourneau D (2003) Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecol Lett 6: 60–68

    Article  Google Scholar 

  • Eber S, Brandl R (1994) Ecological and genetic spatial patterns of Urophora cardui ( Diptera: Tephritidae) as evidence for population structure and biogeographical processes. J Anim Ecol 63: 187–199

    Google Scholar 

  • Eber S, Brandl R (1996) Metapopulation dynamics of the tephritid fly Urophora cardui: an evaluation of incidence-function model assumptions with field data. J Anim Ecol 65: 621–630

    Article  Google Scholar 

  • Eber S, Brandl R (2003) Regional patch dynamics of the weed Cirsium arvense, and possible implications for plant animal interactions. J Veg Sci 14: 259–266

    Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17: 177–183

    Article  Google Scholar 

  • Faeth SH, Bultman T (2002) Endophytic fungi and interactions among host plants, herbivores, and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123

    Chapter  Google Scholar 

  • Frantzen J (1994a) An epidemiological study of Puccinia punctiformis (Str.) Röhl as a stepping stone to the biological control of Cirsium arvense (L.) Scop. New Phytol 127: 147–154

    Article  Google Scholar 

  • Frantzen J (1994b) The role of clonal growth in the pathosystem Cirsium arvensePuccinia punctiformis. Can J Bot 72: 832–836

    Article  Google Scholar 

  • Frantzen J, Van der Zweerde W (1994) Quantitative resistance of Cirsium arvense to root bud infection by Puccinia punctiformis. Biocontrol Sci Tech 4: 223–228

    Article  Google Scholar 

  • Friedli J, Bacher S (2001a) Mutualistic interaction between a weevil and a rust fungus, two parasites of the weed Cirsium arvense. Oecologia 129: 571–576

    Article  CAS  PubMed  Google Scholar 

  • Friedli J, Bacher S (2001b) Direct and indirect effects of a shoot-base boring weevil and plant competition on the performance of creeping thistle, Cirsium arvense. Biol Control 22: 219–226

    Article  Google Scholar 

  • Gange AC, Brown VK (eds) (1997) Multitrophic level interactions in terrestrial systems. In: Proc 36th Symp of the British Ecological Society, Blackwell Science, Oxford

    Google Scholar 

  • Gliessman SR, Garcia ER, Amador AM (198 1) The ecological basis for the application of traditional agricultural technology in the management of tropical agro-ecosystems. Agro-ecosystems 7: 173–185

    Google Scholar 

  • Gordon DR (1998) Effects of invasive, non-indigenous plant-species on ecosystem processes: lessons from Florida. Ecol Appl 8: 975–989

    Article  Google Scholar 

  • Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol Cons 85: 223–231

    Article  Google Scholar 

  • Guske S, Boyle C, Schulz B (1996) New aspects concerning biological control of Cirsium arvense. IOBC WPRS Bull 19: 281–290

    Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition.Am Nat 94: 421–425

    Google Scholar 

  • Hassell MP (2000) The spatial and temporal dynamics of host–parasitoid interactions. Oxford University Press, London

    Google Scholar 

  • Hatcher PE (1995) Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol Rev 70: 639–694

    Article  Google Scholar 

  • Hatcher PE, Paul ND (2001) Plant pathogen–herbivore interactions and their effects on weeds. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CAB International, Wallingford, pp 193–226

    Chapter  Google Scholar 

  • Hegi G (1987) Illustrierte Flora von Mitteleuropa. Band VI, Teil 4. Paul Parey, Berlin Heimann B, Cussans GW (1996) The importance of seeds and sexual reproduction in the population biology of Cirsium arvense–a literature review. Weed Res 36: 493–503

    Google Scholar 

  • Hoffmann GM, Nienhaus F, Poehling H-M, Schönbeck F, Weltzien HC, Wilbert H (1994) Lehrbuch der Phytomedizin. 3. Auflage. Blackwell, Berlin

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds. Distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80: 1495–1504

    Article  Google Scholar 

  • Hulme PE (1996) Herbivores and the performance of grassland plants: a comparison of arthropod, mollusc and rodent herbivory. J Ecol 84: 43–51

    Article  Google Scholar 

  • Jeltsch F, Wissel C, Eber S, Brandl R (1992) Oscillating dispersal patterns of tephritid fly populations. Ecol Mod 69: 53–75

    Google Scholar 

  • Jules ES, Kauffman MK, Ritts WD, Carroll AL (2002) Spread of an invasive pathogen over a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83: 3167–3181

    Article  Google Scholar 

  • Kareiva P, Wennergren U (1995) Connecting landscape patterns to ecosystem and population processes. Nature 373: 299–302

    Article  CAS  Google Scholar 

  • Keane RM, Crawley (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17: 164–170

    Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67–70

    Article  CAS  PubMed  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2001) Interactions between the rust fungus Puccinia punctiformis and ectophagous and endophagous insects on creeping thistle. J Appl Ecol 38: 548–556

    Article  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133: 193–199

    Article  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2003) Influence of pathogen application and cutting on the performance and nutrient storage of Cirsium arvense. J Appl Ecol 40: 334–343

    Article  Google Scholar 

  • Kruess A (2002) Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense. Oecologia 130: 563–569

    Article  Google Scholar 

  • Kruess A (2003a) Effects of landscape structure and habitat type on a plant–herbivore–parasitoid community. Ecography 26: 283–290

    Article  Google Scholar 

  • Kruess A (2003b) Effects of landscape and habitat type on potential biological control agents against creeping thistle and their natural enemies. IOBC WPRS Bull 26(4):83– 88

    Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (2000) Effects of habitat fragmentation on plant–insect communities. In: Ekbom B, Irvin ME, Robert Y (eds) Interchanges of insects between agricultural and surrounding landscapes. Kluwer, Dordrecht, pp 53–70

    Chapter  Google Scholar 

  • Leibold MA (1996) a graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat 147:784–812

    Google Scholar 

  • Maron JL, Harrison S (1997) Spatial pattern formation in an insect host–parasitoid system. Science 278: 1619–1621

    Article  CAS  PubMed  Google Scholar 

  • Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43: 77–89

    Article  Google Scholar 

  • Masters GJ, Brown VK (1997) Host-plant mediated interactions between spatially separated herbivores: effects on community structure. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 217–237

    Google Scholar 

  • McClay AS, Bourchier RS, Butts RA, Peschken DP (2001) Cirsium arvense. In: Mason PG, Huber JT (eds) Biological control programmes in Canada 1981–2000. CAB International, Wallingford, pp 318–330

    Chapter  Google Scholar 

  • McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40: 329–336

    Article  Google Scholar 

  • Moore RJ (1975) The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can J Plant Sci 55: 1033–1048

    Article  Google Scholar 

  • Mortimer SR, Van der Putten WH, Brown VK (1999) Insect and nematode herbivory below-ground: interactions and role in vegetation development. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 205– 238

    Google Scholar 

  • Mulder CPH, Koricheva J, Huss-Danell K, Hogberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2: 237–246

    Article  Google Scholar 

  • Müller-Schärer H, Scheepens PC (1997) Biological control of weed in crops: a coordinated European research programme (COST 816). Integrated Pest Manage Rev 2: 1–6

    Article  Google Scholar 

  • Müller-Schärer H, Scheepens PC, Greaves MP (2000) Biological control of weeds in European crops: recent achievements and future work. Weed Res 1: 83–98

    Article  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity.Am Nat 118: 240–261

    Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2001) Landscape complexity and farming practice influence the condition of polyphagous carabid beetles. Ecol Appl 11: 480–488

    Article  Google Scholar 

  • Owen DF, Wiegert RD (1976) Do consumers maximize plant fitness? Oikos 27: 488–492

    Article  Google Scholar 

  • Persson L (1999) Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85: 385–397

    Article  Google Scholar 

  • Peschken DP (1981) Biological control of Canada thistle. Proc N Cent Weed Conf 36: 169–173

    Google Scholar 

  • Peschken DP (1984) Cirsium arvense (L.) Scop., Canada thistle (Compositae). In: Kelleher JS, Hulme MA (eds) Biological control programmes against insects and weeds in Canada 1969–1980. Commonwealth Agricultural Bureau, Slough, pp 139–146

    Google Scholar 

  • Roland J, Taylor PD (1995) Herbivore–natural enemy interactions in fragmented and continuous forests. In: Cappucino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic Press, San Diego, pp 195–208

    Chapter  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386: 710–713

    Article  CAS  Google Scholar 

  • Root RB (1973) Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43: 95–125

    Article  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial ecosystems: a review of the effects of carnivore removal on plants.Am Nat 155: 141–153

    Google Scholar 

  • Schroeder D (1980) The biological control of thistles. Biocontrol News Inf 1: 9–26

    Google Scholar 

  • Schroeder D, Müller-Schärer H, Stinson CSA (1993) A European weed survey in 10 major crop systems to identify targets for biological control. Weed Res 33: 449–458

    Article  Google Scholar 

  • Seitz A, Komma M (1984) Genetic polymorphism and its ecological background in tephritid populations (Diptera: Tephritidae). In: Wöhrmann K, Löschke V (eds) Population biology and evolution. Springer, Berlin Heidelberg New York, pp 143–158

    Chapter  Google Scholar 

  • Siegel MR (1993) Acremonium endophytes: our current state of knowledge and future directions for research. Agric Ecosyst Environ 44:301–321

    Google Scholar 

  • Skinner K, Smith L, Rice P (2000) Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Sci 48: 640–644

    Article  CAS  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-depen- dent effects of landscape context on three pollinator guilds. Ecology 83: 1421–1432

    Article  Google Scholar 

  • Steiner WE (1984) A review of the biology of the phalcrid beetles. In: Wheeler Q, Blackwell M (eds) Fungus–insect relationships, perspectives in ecology and evolution. Columbia University Press, New York, pp 424–445

    Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893–895

    Article  CAS  PubMed  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101: 18–25

    Article  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of north west Europe: methodology, density and longevity. Cambridge University Press, Cambridge Trumble JT, Kolodny-Hirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38: 93–119

    Google Scholar 

  • Tscharntke T, Hawkins BA (2002) Multitrophic level interactions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 190–205

    Chapter  Google Scholar 

  • Van der Putten WH (1999) Interactions of plants, soil pathogens and their antagonists in natural ecosystems. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant pathogen associations. CAB International, Wallingford, pp 285–305

    Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wäckers FL (2001) Linking above-and below-ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16: 547–554

    Article  Google Scholar 

  • Vitousek PM (1986) Biological invasions and ecosystem properties: can species make a difference? In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Ecological Studies 58. Springer, Berlin Heidelberg New York, pp 163–176

    Chapter  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasions by Myrica faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59: 247–265

    Article  Google Scholar 

  • Völker K, Boyle C (1994) Bean rust as a model system to evaluate efficiency of teliospore induction, especially in the potential mycoherbicide Puccinia punctiformis. Weed Res 34: 275–281

    Article  Google Scholar 

  • Wardle DA (ed) (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Watson AK, Keogh WJ (1980) Mortality of Canada thistle due to Puccinia punctiformis. In: Delfosse ES (ed) Proc 5th Int Symp on Biological Control of Weeds, Brisbane, CSIRO, Melbourne, pp 325–332

    Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35: 1–22

    Article  Google Scholar 

  • Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23: 41–78

    Article  Google Scholar 

  • Wiegand T, Molony KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154: 605–627

    Article  PubMed  Google Scholar 

  • Wilby A, Brown VK (2001) Herbivory, litter and soil disturbance as determinants of vegetation dynamics during early old-field succession under set-aside. Oecologia 127: 259–265

    Article  CAS  PubMed  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48: 607–615

    Article  Google Scholar 

  • Wilson CL (1969) Use of plant pathogens in weed control. Annu Rev Phytopath 7:411– 434

    Google Scholar 

  • With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78: 151–169

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kruess, A., Eber, S., Kluth, S., Tscharntke, T. (2008). Plant-Insect-Pathogen Interactions on Local and Regional Scales. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_8

Download citation

Publish with us

Policies and ethics