Approximate Shortest Paths Guided by a Small Index

  • Jörg Derungs
  • Riko Jacob
  • Peter Widmayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4619)

Abstract

Distance oracles and graph spanners are excerpts of a graph that allow to compute approximate shortest paths. Here, we consider the situation where it is possible to access the original graph in addition to the graph excerpt while computing paths. This allows for asymptotically much smaller excerpts than distance oracles or spanners. The quality of an algorithm in this setting is measured by the size of the excerpt (in bits), by how much of the original graph is accessed (in number of edges), and the stretch of the computed path (as the ratio between the length of the path and the distance between its end points). Because these three objectives are conflicting goals, we are interested in a good trade-off. We measure the number of accesses to the graph relative to the number of edges in the computed path.

We present a parametrized construction that, for constant stretches, achieves excerpt sizes and number of accessed edges that are both sublinear in the number of graph vertices. We also show that within these limits, a stretch smaller than 5 cannot be guaranteed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. Journal of the ACM 52(1), 25–53 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, New York (1992)MATHGoogle Scholar
  3. 3.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D.: Generating sparse spanners for weighted graphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 26–37. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in Õ (n 2) time. In: SODA 2004, pp. 271–280 (2004)Google Scholar
  5. 5.
    Bollobás, B.: Extremal Graph Theory. Academic Press, San Diego (1978)MATHGoogle Scholar
  6. 6.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4, 233–235 (1979)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM Journal on Computing 32(5), 1338–1355 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: SODA 2006, pp. 714–723 (2006)Google Scholar
  9. 9.
    Demetrescu, C., Goldberg, A., Johnson, D. (eds.): 9th DIMACS Challenge on Shortest Paths, available at http://www.dis.uniroma1.it/~challenge9 (to appear)
  10. 10.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: SODA 2005, pp. 745–754 (2005)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)Google Scholar
  13. 13.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: SODA 2005, vol. 16, pp. 156–165 (2005)Google Scholar
  14. 14.
    Katriel, I., Meyer, U.: Elementary graph algorithms in external memory. In: Algorithms for Memory Hierarchies, pp. 62–84 (2002)Google Scholar
  15. 15.
    Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116 (1989)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744 (1918)Google Scholar
  18. 18.
    Regev, H.: The weight of the greedy graph spanner. Technical Report CS95-22, Weizmann Institute Of Science (July 1995)Google Scholar
  19. 19.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jörg Derungs
    • 1
  • Riko Jacob
    • 1
  • Peter Widmayer
    • 1
  1. 1.Institute of Theoretical Computer Science, ETH Zurich, Switzerland, ETH Zentrum, CH-8092 Zürich 

Personalised recommendations