Kernelization and Complexity Results for Connectivity Augmentation Problems

  • Jiong Guo
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4619)


Connectivity augmentation problems ask for adding a set of at most k edges whose insertion makes a given graph satisfy a specified connectivity property, such as bridge-connectivity or biconnectivity. We show that, for bridge-connectivity and biconnectivity, the respective connectivity augmentation problems admit problem kernels with O(k 2) vertices and links. Moreover, we study partial connectivity augmentation problems, naturally generalizing connectivity augmentation problems. Here, we do not require that, after adding the edges, the entire graph should satisfy the connectivity property, but a large subgraph. In this setting, two polynomial-time solvable connectivity augmentation problems behave differently, namely, the partial biconnectivity augmentation problem remains polynomial-time solvable whereas the partial strong connectivity augmentation problem becomes W[2]-hard with respect to k.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM Journal on Computing 5(4), 653–665 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 3/2-approximation algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 90–101. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM Journal on Computing 10(2), 270–283 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. Journal of Algorithms 14(2), 214–225 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-connectivity network design problems. SIAM Journal on Computing 33(3), 704–720 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kortsarz, G., Nutov, Z.: A 12/7-approximation algorithm for the vertex-connectivity of a graph from 1 to 2, Manuscipt (2002)Google Scholar
  8. 8.
    Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126, 83–113 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  10. 10.
    Rosenthal, A., Goldner, A.: Smallest augmentations to biconnect a graph. SIAM Journal on Computing 6(1), 55–66 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jiong Guo
    • 1
  • Johannes Uhlmann
    • 1
  1. 1.Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 JenaGermany

Personalised recommendations