Cuttings for Disks and Axis-Aligned Rectangles

  • Eynat Rafalin
  • Diane L. Souvaine
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4619)


We present new asymptotically tight bounds on cuttings, a fundamental data structure in computational geometry. For n objects in space and a parameter r ∈ ℕ, an \(\frac{1}{r}\) -cutting is a covering of the space with simplices such that the interior of each simplex intersects at most n/r objects. For n pairwise disjoint disks in ℝ3 and a parameter r ∈ ℕ, we construct a \(\frac{1}{r}\)-cutting of size O(r 2). For n axis-aligned rectangles in ℝ3, we construct a \(\frac{1}{r}\)-cutting of size O(r 3/2).

As an application related to multi-point location in three-space, we present tight bounds on the cost of spanning trees across barriers. Given n points and a finite set of disjoint disk barriers in ℝ3, the points can be connected with a straight line spanning tree such that every disk cuts at most \(O(\sqrt{n})\) edges of the tree. If the barriers are axis-aligned rectangles, then there is a straight line spanning tree such that every rectangle cuts O(n 1/3) edges. Both bounds are the best possible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K.: Partitioning arrangements of lines I: an efficient deterministic algorithm. Discrete Comput. Geom. 5, 449–483 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asano, T., de Berg, M., Cheong, O., Guibas, L.J., Snoeyink, J., Tamaki, H.: Spanning trees crossing few barriers. Discrete and Comput. Geom. 30(4), 591–606 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    de Berg, M., Guibas, L.J., Halperin, D.: Vertical decompositions for triangles in 3-space. Discrete Comput. Geom. 15(1), 35–61 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boissonnat, J.-D., Yvinec, M.: Algorithmic geometry. Cambridge Univ. Press, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf. Process. Lett. 7(1), 10–14 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9, 145–158 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chazelle, B.: Cuttings. In: Handbook of Data Structures and Applications, pp. 501–511. CRC Press, Boca Raton (2005)Google Scholar
  8. 8.
    Chazelle, B.: The Discrepancy Method. Cambridge Univ. Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: A singly-exponential stratification scheme for real semi-algebraic varieties. Theoret. Comp. Sci. 84, 77–105 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom. 4(5), 467–489 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ezra, E., Sharir, M.: Counting and representing intersections among triangles in three dimensions. Comput. Geom. Theory Appl. 32(3), 196–215 (2005)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Haussler, D., Welzl, E.: ε-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hoffmann, M., Tóth, Cs.D.: Connecting points in the presence of obstacles in the plane. In: Proc. 14th Canadian Conf. Comput. Geom., pp. 63–67 (2002)Google Scholar
  16. 16.
    Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. J. ACM 42, 321–328 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Koltun, V.: Almost tight upper bounds for vertical decompositions in four dimensions. J. ACM 51(5), 699–730 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Koltun, V.: Sharp bounds for vertical decompositions of linear arrangements in four dimensions. Discrete Comput. Geom. 31(3), 435–460 (2004)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Koltun, V., Sharir, M.: Curve-sensitive cuttings. SIAM J. Comput. 34(4), 863–878 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Matoušek, J.: Cutting hyperplane arrangements. Discrete Comput. Geom. 6, 385–406 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Matoušek, J.: Derandomization in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 559–595. North-Holland, Amsterdam (2000)CrossRefGoogle Scholar
  22. 22.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  23. 23.
    Mulmuley, K.: Hidden surface removal with respect to a moving view point. In: Proc. Sympos. Theory of Computing, pp. 512–522. ACM Press, New York (1991)Google Scholar
  24. 24.
    Pach, J., Sharir, M.: Geometric incidences, Towards a theory of geometric graphs, AMS. Contemp. Math. 342, 185–223 (2004)MathSciNetGoogle Scholar
  25. 25.
    Paterson, M., Yao, F.F.: Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom. 5, 485–503 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Paterson, M., Yao, F.F.: Optimal binary space partitions for orthogonal objects. J. Algorithms 13(1), 99–113 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pellegrini, M.: On point location and motion planning among simplices. SIAM J. Comput. 25(5), 1061–1081 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pellegrini, M.: On counting pairs of intersecting segments and off-line triangle range searching. Algorithmica 17(4), 380–398 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. of the ACM 29(7), 669–679 (1986)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Sharir, M.: The Clarkson-Shor technique revisited and extended. Combinatorics Probability and Computation 12(2), 191–201 (2003)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Eynat Rafalin
    • 1
  • Diane L. Souvaine
    • 2
  • Csaba D. Tóth
    • 3
  1. 1.Google Inc., Mountain View, CA 
  2. 2.Department of Computer Science, Tufts University, Medford, MA 
  3. 3.Department of Mathematics, MIT, Cambridge, MA 

Personalised recommendations