I/O-Efficient Flow Modeling on Fat Terrains

  • Mark de Berg
  • Otfried Cheong
  • Herman Haverkort
  • Jung Gun Lim
  • Laura Toma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4619)


We study the flow of water on fat terrains, that is, triangulated terrains where the minimum angle of any triangle is bounded from below by a positive constant. We give improved bounds for the worst-case complexity of river networks on fat terrains, and show how to compute the river network and other flow-related structures i/o-efficiently.


Steep Descent River Network Query Point Steep Ascent Watershed Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K.R., Vitter, J.S.: I/O-efficient algorithms for contour-line extraction and planar graph blocking. In: Symp. on Discrete Algorithms 1998, pp. 117–126 (1998)Google Scholar
  2. 2.
    Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arge, L.: The buffer tree: A technique for designing batched external data structures. Algorithmica 37(1), 1–24 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arge, L., Chase, J., Halpin, P., Toma, L., Urban, D., Vitter, J.S., Wickremesinghe, R.: Flow computation on massive grid terrains. GeoInformatica 7(4), 283–313 (2003)CrossRefGoogle Scholar
  5. 5.
    Arge, L., Vahrenhold, J.: I/O-efficient dynamic planar point location. Comp. Geom. 29, 147–162 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Berg, M., Bose, P., Dobrint, K., van Kreveld, M., Overmars, M., de Groot, M., Roos, T., Snoeyink, J., Yu, S.: The complexity of rivers in triangulated terrains. In: Canad. Conf. Comp. Geom. 1996, pp. 325–330 (1996)Google Scholar
  7. 7.
    Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Symp. on Discr. Alg. 1995, pp. 139–149 (1995)Google Scholar
  8. 8.
    Hutchinson, D., Maheshwari, A., Zeh, N.: An external memory data structure for shortest path queries. In: ACM-SIAM Computing and Combin. Conf. 1999, pp. 51–60 (1999)Google Scholar
  9. 9.
    Jones, N.L., Wright, S.G., Maidment, D.R.: Watershed delineation with triangle-based terrain models. Journal of Hydraulic Engineering 116(10), 1232–1251 (1990)CrossRefGoogle Scholar
  10. 10.
    van Kreveld, M.: Digital elevation models and TIN algorithms. In: van Kreveld, M., Roos, T., Nievergelt, J., Widmayer, P. (eds.) Algorithmic Foundations of Geographic Information Systems. LNCS, vol. 1340, pp. 37–78. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    McAllister, M.: The computational geometry of hydrology data in geographic information systems. PhD th., Univ. of British Columbia (1999)Google Scholar
  12. 12.
    McAllister, M.: A watershed algorithm for triangulated terrains. Canad. Conf. Comp. Geom. 1999 (1999)Google Scholar
  13. 13.
    McAllister, M., Snoeyink, J.: Extracting consistent watersheds from digital river and elevation data. Ann. Conf. Amer. Soc. for Photogrammetry and Remote Sensing 1999 (1999)Google Scholar
  14. 14.
    Moet, E., Kreveld, M.v., v/d Stappen, A.F.: On realistic terrains. In: Symp. on Computational Geom. 2006, pp. 177–186 (2006)Google Scholar
  15. 15.
    Palacios-Velez, O., Gandoy-Bernasconi, W., Cuevas-Renaud, B.: Geometric analysis of surface runoff and computation of unit elements in distributed hydrological models. J. Hydrology 211, 266–274 (1998)CrossRefGoogle Scholar
  16. 16.
    Silfer, A.T., Kinn, G.J., Hassett, J.M.: A geographic information system utilizing the triangulated irregular network as a basis for hydrologic modeling. Auto-Carto 8, 129–136 (1987)Google Scholar
  17. 17.
    Theobald, D.M., Goodchild, M.F.: Artifacts of TIN-based surface flow modeling. In: Proc. GIS/LIS 1990, pp. 955–964 (1990)Google Scholar
  18. 18.
    Tucker, G., Lancaster, S., Gasparini, N., Rybarczyk, S.: An object-oriented framework for hydrology and geomorphic modeling using TINs. Computers and Geosc. 27(8), 959–973 (2001)CrossRefGoogle Scholar
  19. 19.
    Yu, S., van Kreveld, M., Snoeyink, J.: Drainage Queries in TINS: from local to global and back again. In: Symp. on Spatial Data Handling 1996, pp. 1–14 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mark de Berg
    • 1
  • Otfried Cheong
    • 2
  • Herman Haverkort
    • 1
  • Jung Gun Lim
    • 2
  • Laura Toma
    • 3
  1. 1.TU EindhovenThe Netherlands
  2. 2.KAISTKorea
  3. 3.Bowdoin CollegeUSA

Personalised recommendations