Discrepancy-Sensitive Dynamic Fractional Cascading, Dominated Maxima Searching, and 2-d Nearest Neighbors in Any Minkowski Metric

  • Mikhail J. Atallah
  • Marina Blanton
  • Michael T. Goodrich
  • Stanislas Polu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4619)


This paper studies a discrepancy-sensitive approach to dynamic fractional cascading. We provide an efficient data structure for dominated maxima searching in a dynamic set of points in the plane, which in turn leads to an efficient dynamic data structure that can answer queries for nearest neighbors using any Minkowski metric.


Query Point Expected Time Range Tree Dynamic Data Structure Amortize Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H.: The nearest neighbor. In: Computational Discrete Mathematics. LNCS, vol. 2122, pp. 13–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statitics. Wiley-Interscience, Chichester (1992)Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45, 891–923 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bentley, J.L.: K-d trees for semidynamic point sets. In: SCG 1990. Proceedings of the sixth annual symposium on Computational geometry, pp. 187–197. ACM Press, New York (1990)CrossRefGoogle Scholar
  5. 5.
    Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: ICML 2006. Proceedings of the 23rd international conference on Machine learning, pp. 97–104 (2006)Google Scholar
  7. 7.
    Chan, T.M.: A dynamic data structure for 3-d convex hull and 2-d nearest neighbor queries. In: Proceedings of the seventeenth ACM-SIAM symposium on Discrete algorithm, pp. 1196–1202. ACM Press, New York (2006)CrossRefGoogle Scholar
  8. 8.
    Chazelle, B.: Geometric complexity and the discrepancy method. In: Abstracts 15th European Workshop Comput. Geom., pp. 21–23. INRIA Sophia-Antipolis (1999)Google Scholar
  9. 9.
    Chazelle, B.: The Discrepancy Method. Cambridge Univ. Press, Cambridge (2002)Google Scholar
  10. 10.
    Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(3), 133–162 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1, 163–191 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In: Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge (2006)Google Scholar
  13. 13.
    David, H.A., Nagaraja, H.N.: Order Statitics, 3rd edn. Wiley-Interscience, Chichester (2003)Google Scholar
  14. 14.
    Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic data structure for multidimensional data. In: SCG. 21st ACM Symp. on Computational Geometry, pp. 296–305. ACM Press, New York (2005)Google Scholar
  15. 15.
    Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: STOC 2002. Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 741–750. ACM Press, New York (2002)CrossRefGoogle Scholar
  16. 16.
    Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity search. In: SODA. Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807. ACM Press, New York (2004)Google Scholar
  17. 17.
    Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5, 215–241 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)zbMATHGoogle Scholar
  19. 19.
    Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA. Proc. Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 367–375 (1992)Google Scholar
  20. 20.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  21. 21.
    Sen, S.: Fractional cascading revisited. J. Algorithms 19(2), 161–172 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Weisstein, E.W.: Beta binomial distribution. In: MathWorld—A Wolfram Web Resource. Wolfram (2007),
  23. 23.
    Weisstein, E.W.: Local discrepancy. In: MathWorld—A Wolfram Web Resource. Wolfram (2007),
  24. 24.
    Yap, C., Zhu, Y.: Yet another look at fractional cascading: B-graphs with application to point location. In: CCCG 2001. Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 173–176 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mikhail J. Atallah
    • 1
  • Marina Blanton
    • 1
  • Michael T. Goodrich
    • 2
  • Stanislas Polu
    • 3
  1. 1.Dept. of Computer Sciences, Purdue Univ. 
  2. 2.Dept. of Computer Science, Univ. of California, Irvine 
  3. 3.École Polytechnique 

Personalised recommendations