Advertisement

Accelerating the Singular Value Decomposition of Rectangular Matrices with the CSX600 and the Integrable SVD

  • Yusaku Yamamoto
  • Takeshi Fukaya
  • Takashi Uneyama
  • Masami Takata
  • Kinji Kimura
  • Masashi Iwasaki
  • Yoshimasa Nakamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)

Abstract

We propose an approach to speed up the singular value decomposition (SVD) of very large rectangular matrices using the CSX600 floating point coprocessor. The CSX600-based acceleration board we use offers 50GFLOPS of sustained performance, which is many times greater than that provided by standard microprocessors. However, this performance can be achieved only when a vendor-supplied matrix-matrix multiplication routine is used and the matrix size is sufficiently large. In this paper, we optimize two of the major components of rectangular SVD, namely, QR decomposition of the input matrix and back-transformation of the left singular vectors by matrix Q, so that large-size matrix multiplications can be used efficiently. In addition, we use the Integrable SVD algorithm to compute the SVD of an intermediate bidiagonal matrix. This helps to further speed up the computation and reduce the memory requirements. As a result, we achieved up to 3.5 times speedup over the Intel Math Kernel Library running on an 3.2GHz Xeon processor when computing the SVD of a 100,000 × 4000 matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK User’s Guide. SIAM, Philadelphia (1992)Google Scholar
  2. 2.
    ClearSpeed Technology Inc., http://www.clearspeed.com/
  3. 3.
    Elmroth, E., Gustavson, F.: Applying Recursion to Serial and Parallel QR Factorization Leads to Better Performance. IBM Journal of Research and Development 44, 605 (2000)CrossRefGoogle Scholar
  4. 4.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  5. 5.
  6. 6.
    Iwasaki, M., Nakamura, Y.: Accurate Computation of Singular Values in terms of Shifted Integrable Schemes. Japan J. Indust. Appl. Math. 1, 239–259 (2006)MathSciNetGoogle Scholar
  7. 7.
    Parlett, B.N., Dhillon, I.: Fernando’s Solution to Wilkinson’s problem: An Application of Double Factorization. Linear Algebra Appl. 267, 247–279 (1997)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Schreiber, R., Van Loan, C.F.: A Storage-Efficient WY Representation for Products of Householder Transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Takata, M., Kimura, K., Iwasaki, M., Nakamura, Y.: Performance of a New Singular Value Decomposition Scheme for Large Scale Matrices. In: Proceedings of The IASTED International Conference on Parallel and Distributed Computing and Networks, pp. 304–309 (2006)Google Scholar
  10. 10.
    Toledo, S., Rabani, E.: Very Large Electronic Structure Calculations using an Out-of-Core Filter-Diagonalization Method. J. Comput. Phys. 180, 256–269 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yusaku Yamamoto
    • 1
  • Takeshi Fukaya
    • 1
  • Takashi Uneyama
    • 2
  • Masami Takata
    • 3
  • Kinji Kimura
    • 4
  • Masashi Iwasaki
    • 5
  • Yoshimasa Nakamura
    • 2
  1. 1.Nagoya University, Nagoya, 464-8603Japan
  2. 2.Kyoto University, Kyoto, 606-8501Japan
  3. 3.Nara Women’s University, Nara, 630-8506Japan
  4. 4.Niigata University, Niigata, 950-2181Japan
  5. 5.Kyoto Prefectural University, 606-8522Japan

Personalised recommendations