Pure cellulose exists in several crystalline polymorphs (Hayashi et al. 1975; Sarko 1986) with different packing arrangements. The unit cells or the diffraction patterns of these crystalline structures represent a quantity which mirrors these differences. The unit cells are listed in Table 5.1. The conformation and packing of the cellulose chains are necessary quantities for a complete description of the polymorphs to evaluate their differences in behavior and properties. However, the determination of the cellulose structures is difficult to achieve, with only a few X-ray reflections often observed at low diffraction angles. Nevertheless, these few observed data normally suffice for the determination of the unit cell. Small differences in the size of the unit cells of the same polymorph are found in studies of various cellulose species and by various authors for the same species and may be caused by differences in supermolecular, i.e., morphological structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andress KR (1929) Das Röntgendiagramm der mercerisierten Cellulose. Z Phys Chem B 4:190–206Google Scholar
  2. Atalla RH (1987) The structures of cellulose. In: Atalla RH (ed) The structures of cellulose–characterization of the solid states. ACS symposium series no 340. American Chemical Society, Washington, pp 1–14CrossRefGoogle Scholar
  3. Atalla RH, Nagel SC (1974) Cellulose–its regeneration in native lattice. Science 185:522–523PubMedCrossRefGoogle Scholar
  4. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–284PubMedCrossRefGoogle Scholar
  5. Atalla RH, VanderHart DL (1989) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. In: Schuerch C (ed) Cellulose and wood–chemistry and technology. Wiley, New York, pp 169–188Google Scholar
  6. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–20PubMedCrossRefGoogle Scholar
  7. Barry AJ, Peterson FC, King AJ (1936) X-ray studies of reactions of cellulose in non-aqueous systems. I. Interaction of cellulose and liquid ammonia. J Am Chem Soc 58:333–337CrossRefGoogle Scholar
  8. Blackwell J (2000) Modeling ordered arrays of cellulose chains. Abstracts of papers of the American Chemical Society 219, Cell, part 1, San Francisco, 26 March 2000, p 127Google Scholar
  9. Buléon A, Chanzy H (1980) Single crystals of cellulose IV2: preparation and properties. J Polym Sci A-2 18:1209–1217Google Scholar
  10. Burgeni A, Kratky O (1929) Röntgenspektrographische Beobachtungen an Cellulose. V. Über das Gitter der Hydratcellulose. Z Phys Chem B 4:401–430Google Scholar
  11. Cartier L, Spassky N, Lotz B (1996) Structures frustrées de polymèrs chireaux. C R Acad Sci Paris Sér II b 322:429–435Google Scholar
  12. Chanzy H, Imada K, Vuong R (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94:299–306CrossRefGoogle Scholar
  13. Chanzy H, Imada K, Mollard A, Vuong R, Barnoud F (1979) Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. Protoplasma 100:303–316CrossRefGoogle Scholar
  14. Clark GL, Parker EA (1937) An X-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41:777–786CrossRefGoogle Scholar
  15. Davis DE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299CrossRefGoogle Scholar
  16. Ellis KC, Warwicker JO (1962) A study of the crystal structure of cellulose I. J Polym Sci 56:339–357CrossRefGoogle Scholar
  17. Fink H-P, Walenta E, Kunze J (1999) Zur Struktur cellulosischer Naturfasern. Papier 9:534–542Google Scholar
  18. Finkenstadt VL, Millane RP (1998) Crystal structure of Valonia cellulose Iβ. Macromolecules 31:3776–7783CrossRefGoogle Scholar
  19. Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of cellulose IV1 and IV2. Can J Chem 63:173–180CrossRefGoogle Scholar
  20. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001CrossRefGoogle Scholar
  21. Gessler K, Krauß N, Steiner T, Betzel C, Sarko A, Sänger W (1995) β-D-Cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406CrossRefGoogle Scholar
  22. Ham JT, Williams DG (1970) The crystal and molecular structure of β-cellobioside-methanol. Acta Crystallogr Sect B 26:1373–1383CrossRefGoogle Scholar
  23. Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) The confirmation of existence of cellulose III1, III2, IV1 and IV2 by the X-ray method. Polym Lett 13:23–27CrossRefGoogle Scholar
  24. Hermans PH (1949) Physics and chemistry of cellulose fibres. Elsevier, New YorkGoogle Scholar
  25. Hermans PH, Weidinger A (1946) The hydrates of cellulose. J Colloid Sci 1:185–193CrossRefGoogle Scholar
  26. Herzog RO, Jancke W (1920a) Röntgenspektrographische Beobachtungen an Zellulose. Z Phys 3:196–198CrossRefGoogle Scholar
  27. Herzog RO, Jancke W (1920b) Über den physikalischen Aufbau einiger hochmolekularer organischer Verbindungen. Ber Dtsch Chem Ges 53:2162–2164CrossRefGoogle Scholar
  28. Hess K, Gundermann J (1937) Über die Einwirkung von flüssigem Ammoniak auf Cellulosefasern. Ber Dtsch Chem Ges 68:1986–1988Google Scholar
  29. Hess K, Trogus C (1935) Über Ammoniak-Cellulose. Ber Dtsch Chem Ges 70:1788–1799Google Scholar
  30. Hess K, Kiessig H, Gundermann J (1941) Röntgenographische und elektronenmikroskopische Untersuchungen der Vorgänge beim Vermahlen von Cellulose. Z Phys Chem B 49:64–82Google Scholar
  31. Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328CrossRefGoogle Scholar
  32. Hori R, Wada M (2006) The thermal expansion of cellulose II and III2 crystals. Cellulose 13:281–290CrossRefGoogle Scholar
  33. Horii F, Hirai A, Kitamaru R (1987a) Cross-polarization-magic angle spinning carbon-13 NMR approach to the structural analysis of cellulose. In: Atalla RH (ed) The structures of cellulose–characterization of the solid states. ACS symposium series no 340. American Chemical Society, Washington, pp 119–134CrossRefGoogle Scholar
  34. Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987b) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2949–2951CrossRefGoogle Scholar
  35. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRefGoogle Scholar
  36. Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257PubMedCrossRefGoogle Scholar
  37. Isogai A (1994) Allomorphs of cellulose and other polysaccharides. In: Gilbert RD (ed) Cellulosic polymers. Hanser, Munich, pp 1–24Google Scholar
  38. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRefGoogle Scholar
  39. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278PubMedCrossRefGoogle Scholar
  40. Kono H, Numata Y (2004) Two-dimensional spin-exchange solid-state NMR study of the crystal structure of cellulose II. Polymer 45:4541–4547CrossRefGoogle Scholar
  41. Kono H, Numata Y (2006) Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent D-glucose units along cellulose chain. Cellulose 13:317–326CrossRefGoogle Scholar
  42. Kono H, Erata T, Takai M (2003) Complete assignment of the CP/MAS 13C NMR spectrum of cellulose III1. Macromolecules 36:3589–3592CrossRefGoogle Scholar
  43. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095PubMedCrossRefGoogle Scholar
  44. Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29:5695–5699CrossRefGoogle Scholar
  45. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRefGoogle Scholar
  46. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416PubMedCrossRefGoogle Scholar
  47. Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRefGoogle Scholar
  48. Lee DM, Blackwell J (1981a) Cellulose-hydrazine complexes. J Polym Sci B 19:459–465Google Scholar
  49. Lee DM, Blackwell J (1981b) Structure of cellulose II hydrate. Biopolymers 20:2165–2179CrossRefGoogle Scholar
  50. Lee DM, Blackwell J, Litt MH (1983) Structure of a cellulose II-hydrazine complex. Biopolymers 22:1383–1399CrossRefGoogle Scholar
  51. Lee DM, Burnfield KE, Blackwell J (1984) Structure of a cellulose I-ethylenediamine complex. Biopolymers 23:111–126CrossRefGoogle Scholar
  52. Legrand C (1951) Recherches sur la cellulose III régénérée de l’ammoniac-cellulose. J Polym Sci 7:333–339CrossRefGoogle Scholar
  53. Leung F, Marchessault RH (1973) Crystal structure of β-D, 1→4 xylobiose hexaacetate. Chem 51:1215–1222Google Scholar
  54. Mo F, Jensen LH (1978) The crystal structure of a β-(1→4) linked disaccharide, α-N, N′-diacetylchitobiose monohydrate. Acta Crystallogr Sect B 34:1562–1569CrossRefGoogle Scholar
  55. Macchi E, Marx-Figini M, Fischer EW (1968) Elektronenbeugungsuntersuchungen an nativer und umgefällter Cellulose. Makromol Chem 120:235–237CrossRefGoogle Scholar
  56. Maréchal Y, Chanzy H (2000) The hydrogen bond network in IM cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  57. Marrinan HJ, Mann J (1956) Infrared spectra of crystalline modifications of cellulose. J Polym Sci 21:301–311CrossRefGoogle Scholar
  58. Nishimura H, Sarko A (1987a) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866CrossRefGoogle Scholar
  59. Nishimura H, Sarko A (1987b) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874CrossRefGoogle Scholar
  60. Nishimura H, Sarko A (1991) Mercerization of cellulose. 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778CrossRefGoogle Scholar
  61. Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules 24:759–770CrossRefGoogle Scholar
  62. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRefGoogle Scholar
  63. Nishiyama Y, Chanzy H, Langan P (2003) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306PubMedCrossRefGoogle Scholar
  64. Numata Y, Kono H, Kawano S, Erata T, Takai M (2003) Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I-ethylenediamine complex. J Biosci Bioeng 96:461–466PubMedGoogle Scholar
  65. Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182CrossRefGoogle Scholar
  66. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRefGoogle Scholar
  67. Peralta-Inga Z, Johnson GP, Dowd MK, Rendleman JA, Stevens ED, French AD (2002) The crystal structure of the P-cellobiose·2·NaI·2·H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861PubMedCrossRefGoogle Scholar
  68. Pertsin AJ, Nugmanov OK, Marchenko GN, Kitaigorodsky AI (1984) Crystal structure of cellulose polymorphs by potential energy calculations: 1. Most probable models for mercerized cellulose. Polymer 25:107–114CrossRefGoogle Scholar
  69. Raymond S, Henrissat B, Tran Qui D, Kvick Å, Chanzy H (1995a) The crystal structure of methyl β-cellotrioside monohydrate 0.25 ethanolate and its relationship to cellulose II. Carbohydr Res 277:209–229PubMedCrossRefGoogle Scholar
  70. Raymond S, Heyraud A, Tran Qui D, Kvick Å, Chanzy H (1995b) Crystal and molecular structure of β-D-cellotetraose hemihydrate as a model of cellulose II. Macromolecules 28:2096–2100CrossRefGoogle Scholar
  71. Sakurada J, Hutino K (1936) Über die Quellung der Zellulose durch Wasser. Kolloid-Z 77:346–351CrossRefGoogle Scholar
  72. Sarko A (1986) Recent X-ray crystallographic studies of celluloses. In: Young RA, Rowell RM (eds) Cellulose–structure, modification and hydrolysis. Wiley, New York, pp 29–49Google Scholar
  73. Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7:486–494CrossRefGoogle Scholar
  74. Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose III1 and its relationship to other cellulose polymorphs. Macromolecules 9:857–867CrossRefGoogle Scholar
  75. Sheldrick GM (1997) SHELX-97. Program for the refinement of crystal structures. University of GöttingenGoogle Scholar
  76. Sternberg U, Koch F-T, Prieß W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199CrossRefGoogle Scholar
  77. Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857CrossRefGoogle Scholar
  78. Sugiyama J, Okano T, Yamamote H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRefGoogle Scholar
  79. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  80. VanderHart DL, Atalla RH (1984) Studies of microstructure in native cellulose using solid-state 13C NMR. Macromolecules 17:1465–1472CrossRefGoogle Scholar
  81. Wada M (2002) Lateral thermal expansion of cellulose Iβ and III1 polymorphs. J Polym Sci B 40:1095–1102CrossRefGoogle Scholar
  82. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose III1 prepared in supercritical ammonia. Macromolecules 34:1237–1243CrossRefGoogle Scholar
  83. Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polymer J 35:155–159CrossRefGoogle Scholar
  84. Wada M, Heux L, Sugiyama J (2004a) Polymorphism of cellulose I family: reinvestigation of cellulose IV. Biomacromolecules 5:1385–1391PubMedCrossRefGoogle Scholar
  85. Wada M, Chanzy H, Nishiyama Y, Langan P (2004b) Cellulose III1 crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRefGoogle Scholar
  86. Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose III1. Macromolecules 39:2947–2952CrossRefGoogle Scholar
  87. Watanabe S, Takai M, Hayashi J (1968) An X-ray study on cellulose triacetate. J Polym Sci C 23:825–835Google Scholar
  88. Whitaker PM, Nieduszynski IA, Atkins EDT (1974) Structural aspects of soda-cellulose II. Polymer 15:125–127CrossRefGoogle Scholar
  89. Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13:1183–1187CrossRefGoogle Scholar
  90. Zugenmaier P (1974) Conformation and packing analysis of polysaccharides. I: mannan. Biopolymers 13:1127–1139CrossRefGoogle Scholar
  91. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidleberg 2008

Personalised recommendations