Nanophotonics and Single Molecules

  • W. E. Moerner
  • P. James Schuck
  • David P. Fromm
  • Anika Kinkhabwala
  • Samuel J. Lord
  • Stefanie Y. Nishimura
  • Katherine A. Willets
  • Arvind Sundaramurthy
  • Gordon Kino
  • Meng He
  • Zhikuan Lu
  • Robert J. Twieg
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 12)

Single emitting molecules are currently providing a new window into nanoscale systems ranging from biology to materials science. The amount of information that can be extracted from each single molecule depends upon the specific photophysical properties of the fluorophore and how these properties are affected by the nearby environment. For this reason, it is necessary to develop single-molecule emitters with as many different reporter functions as possible. The first part of this chapter describes a relatively new class of single-molecule fluorophores which offer tunable photophysical properties and, in turn, improved local reporting functionality on the nanometer length scale. The second part of this chapter presents metallic nanostructures which can address a second issue: the mismatch between the typical size of a single fluorophore (~1 nm along a long dimension) and the wavelength of light (~500 nm). Such nanostructures could lead to more efficient excitation of single molecules, in particular, higher excitation probability as well as reduced backgrounds, and effectively higher spatial resolution. Metallic nanostructures based on two triangles formed into a bowtie shape feature large enhancements of the local electromagnetic field and give rise to strong surface-enhanced Raman scattering of molecules. In future work, enhanced electromagnetic structures can be combined with single-molecule reporters in a variety of applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albota, M.A., C. Xu, et al. (1998). Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl. Opt. 37: 7352–7356.PubMedCrossRefGoogle Scholar
  2. Ambrose, W.P., P.M. Goodwin, et al. (1994). Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265: 364–367.PubMedCrossRefGoogle Scholar
  3. Barbara, P.F., A.J. Gesquiere, et al. (2005). Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38: 602–610.PubMedCrossRefGoogle Scholar
  4. Barkai, E., Y.-J. Jung, et al. (2004). Theory of single-molecule spectroscopy: Beyond the ensemble average. Annu. Rev. Phys. Chem. 55: 457–507.PubMedCrossRefGoogle Scholar
  5. Betzig, E., J.K. Trautman, et al. (1991). Breaking the diffraction barrier: Optical microscopy on a nanometric scale. Science 251: 1468–1470.PubMedCrossRefGoogle Scholar
  6. Beversluis, M.R., A. Bouhelier, et al. (2003). Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68: 115433.CrossRefGoogle Scholar
  7. Bian, R.X., R.C. Dunn, et al. (1995). Single molecule emission characteristics in near field microscopy. Phys. Rev. Lett. 75: 4772–4775.PubMedCrossRefGoogle Scholar
  8. Bohn, J.L., D.J. Nesbitt, et al. (2001). Field enhancement in apertureless near-field scanning optical microscopy. J. Opt. Soc. Amer. A 18(12): 2998–3006.CrossRefGoogle Scholar
  9. Bouhelier, A., M.R. Beversluis, et al. (2003). Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl. Phys. Lett. 83: 5041–5043.CrossRefGoogle Scholar
  10. Boyd, G.T., Z.H. Yu, et al. (1986). Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33: 7923–7936.CrossRefGoogle Scholar
  11. Burland, D.M., R.D. Miller, et al. (1994). Second-order nonlinearity of poled-polymer systems. Chem. Rev. 94: 31–75.CrossRefGoogle Scholar
  12. Chen, C.K., A.R.B. de Castro, et al. (1981). Surface enhanced second-harmonic generation. Phys. Rev. Lett. 46: 145–148.CrossRefGoogle Scholar
  13. Cotlet, M., S. Masuo, et al. (2004). Probing conformational dynamics in single donor–acceptor synthetic molecules by means of photoinduced reversible electron transfer. Proc. Nat. Acad. Sci. USA 101: 13343–13348.CrossRefGoogle Scholar
  14. Crozier, K.B., A. Sundaramurthy, et al. (2003). Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94: 4632–4642.CrossRefGoogle Scholar
  15. Denk, W., J.H. Strickler, et al. (1990). Two-photon laser scanning fluorescence microscopy. Science 248: 73–76.PubMedCrossRefGoogle Scholar
  16. Fleischmann, M., P.J. Hendra, et al. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2): 163–166.CrossRefGoogle Scholar
  17. Fromm, D.P., A. Sundaramurthy, et al. (2004). Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 4: 957–961.CrossRefGoogle Scholar
  18. Fromm, D.P., A. Sundaramurthy, et al. (2006). Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. Commun. 124(6): 061101.Google Scholar
  19. Genov, D.A., A.K. Sarychev, et al. (2004). Resonant field enhancement from metal nanoparticle arrays. Nano Lett. 4: 153–158.CrossRefGoogle Scholar
  20. Grober, R.D., R.J. Schoelkopf, et al. (1997). Optical antenna: Towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70: 1354–1356.CrossRefGoogle Scholar
  21. Ha, T. (2001). Single-molecule fluorescence resonant energy transfer. Methods 25: 78–86.PubMedCrossRefGoogle Scholar
  22. Ha, T., T.A. Laurence, et al. (1999). Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103: 6839–6850.CrossRefGoogle Scholar
  23. Hao, E. and G.C. Schatz (2004). Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120: 357–366.PubMedCrossRefGoogle Scholar
  24. Haran, G. (2004). Single molecule-Raman spectroscopy and local work function fluctuations. Israel J. Chem. 44: 385–390.CrossRefGoogle Scholar
  25. Hartschuh, A., E.J. Sanchez, et al. (2003). High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90: 95503.CrossRefGoogle Scholar
  26. Haynes, C.L., A.D. McFarland, et al. (2003). Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107: 7337–7342.CrossRefGoogle Scholar
  27. He, M., R. Twieg, et al. (2002). Dicyanomethylenedihydrofuran photorefractive materials. Proc. SPIE 4802: 9–20.CrossRefGoogle Scholar
  28. Hill, W. and B. Wehling (1993). Potential- and pH-dependent surface-enhanced Raman scattering of p-mercapto aniline on silver and gold substrates. J. Phys. Chem. 97: 9451–9455.CrossRefGoogle Scholar
  29. Hummer, G. and A. Szabo (2005). Free energy surfaces from single-molecule force spectroscopy. Acc. Chem. Res. 38: 504–513.PubMedCrossRefGoogle Scholar
  30. Jackson, J.B., S.L. Westcott, et al. (2003). Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82: 257–259.CrossRefGoogle Scholar
  31. Jeanmaire, D.L. and R.P. Van Duyne (1977). Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84(1): 1–20.CrossRefGoogle Scholar
  32. Jin, L., A.C. Millard, et al. (2005). Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys. J. 89(1): L04–6.PubMedCrossRefGoogle Scholar
  33. Kanis, D.R., M.A. Ratner, et al. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94: 195–242.CrossRefGoogle Scholar
  34. Kippelen, B., F. Meyers, et al. (1997). Chromophore design for photorefractive applications. J. Amer. Chem. Soc. 119(19): 4559–4560.CrossRefGoogle Scholar
  35. Kneipp, K., H. Kneipp, et al. (2002). Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Mat. 14: R597–R624.CrossRefGoogle Scholar
  36. Kneipp, K., Y. Wang, et al. (1997). Single molecule detection using surface-enhanced Raman scattering. Phys. Rev. Lett. 78: 1667–1105.CrossRefGoogle Scholar
  37. Kuzyk, M.G. and C.W. Dirk (1998). Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials. New York: Dekker-CRC Press.Google Scholar
  38. Lakowicz, J.R. (1999). Principles of Fluorescence Spectroscopy. New York: Kluwer Academic.Google Scholar
  39. Lee, T.-H., J.I. Gonzales, et al. (2005). Single-molecule optoelectronics. Acc. Chem. Res. 38: 534–541.PubMedCrossRefGoogle Scholar
  40. Lord, S.J., Z. Lu, et al. (2007). Photophysical properties of acene DCDHF fluorophores: Long-wavelength single-molecule emitters designed for cellular imaging. J. Phys. Chem. A published on Web 8/24/2007, “http://dx.doi.org/10.1021/jp0712598” 10.1021/jp0712598.
  41. Lounis, B.L. and M. Orrit (2005). Single-photon sources. Rep. Prog. Phys. 68: 1129–1179.CrossRefGoogle Scholar
  42. Lu, H.P. (2005). Probing single-molecule protein dynamics. Acc. Chem. Res. 38: 557–565.PubMedCrossRefGoogle Scholar
  43. Maier, O., V. Oberle, et al. (2002). Fluorescent lipid probes: Some properties and applications. Chem. Phys. Lipids 116: 3–18.PubMedCrossRefGoogle Scholar
  44. Melikian, G., F.P. Rouessac, et al. (1995). Synthesis of substituted dicyanomethylendihydrofurans. Synth. Commun. 25(19): 3045–3051.CrossRefGoogle Scholar
  45. Michaels, A.M., J. Jiang, et al. (2000). Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104: 11965–11971.CrossRefGoogle Scholar
  46. Moerner, W.E. (1997). Those blinking single molecules. Science 277: 1059.CrossRefGoogle Scholar
  47. Moerner, W.E. (2003). Optical measurements of single molecules in cells. Trends Analyt. Chem. 22: 544–548.CrossRefGoogle Scholar
  48. Moerner, W.E. (2004). Single-photon sources based on single molecules in solids. New J. Phys. 6: 88.CrossRefGoogle Scholar
  49. Moerner, W.E. and D.P. Fromm (2003). Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74: 3597–3619.CrossRefGoogle Scholar
  50. Moerner, W.E. and M. Orrit (1999). Illuminating single molecules in condensed matter. Science 283: 1670–1676.PubMedCrossRefGoogle Scholar
  51. Moskovits, M. (1985). Surface-enhanced spectroscopy. Rev. Mod. Phys. 57: 783–826.CrossRefGoogle Scholar
  52. Nalwa, H.S. and S. Miyata (Eds.) (1997). Nonlinear Optics of Organic Molecules and Polymers. Boca Raton, FL: CRC Press.Google Scholar
  53. Nicoud, J.F. and R.J. Twieg (1987). Design and Synthesis of Organic Molecular Compounds for Efficient Second Harmonic Generation. Nonlinear Optical Properties of Organic Molecules and Crystals. D. S. Chemla and J. Zyss. New York: Academic Press. 1: 227–296.Google Scholar
  54. Nie, S. and S.R. Emory (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275: 1102–1106.PubMedCrossRefGoogle Scholar
  55. Nishimura, S.Y., S.J. Lord, L.O. Klein, K.A. Willets, M. He, Z. Lu, R.J. Twieg, and W.E. Moerner (2006). Diffusion of lipid-like single-molecule fluorophores in the cell membrane, J. Phys. Chem. B 110: 8151–8157.PubMedCrossRefGoogle Scholar
  56. Novotny, L., E.J. Sanchez, et al. (1998). Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams. Ultramicroscopy 71: 21–29.CrossRefGoogle Scholar
  57. Osawa, M., N. Matsuda, et al. (1994). Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 98: 12702–12707.CrossRefGoogle Scholar
  58. Ostroverkhova, O. and W.E. Moerner (2004). Organic photorefractives: Mechanisms, materials, and applications. Chem. Revs. 104: 3267–3314.CrossRefGoogle Scholar
  59. Ostroverkhova, O., D. Wright, et al. (2002). Recent advances in the understanding and development of photorefractive polymers and glasses. Adv. Funct. Mater. 12(9): 621–629.CrossRefGoogle Scholar
  60. Otto, A. (2002). What is observed in single molecule SERS, and why? J. Raman Spectrosc. 33(8): 593–598.CrossRefGoogle Scholar
  61. Palik, E.D. (1985). Handbook of Optical Constants. Orlando, FL: Academic Press.Google Scholar
  62. Parasassi, T., E.K. Krasnowska, et al. (1998). Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 8: 365–373.CrossRefGoogle Scholar
  63. Prasad, P.N. and D.J. Williams (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers. New York: John Wiley.Google Scholar
  64. Rasnik, I., S.A. McKinney, et al. (2005). Surfaces and orientations: Much to FRET about? Acc. Chem. Res. 38: 542–548.PubMedCrossRefGoogle Scholar
  65. Rechberger, W., A. Hohenau, et al. (2003). Optical properties of two interacting gold nanoparticles. Opt. Commun. 220: 137–141.CrossRefGoogle Scholar
  66. Schuck, P.J., D.P. Fromm, et al. (2005a). Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94: 017402.PubMedCrossRefGoogle Scholar
  67. Schuck, P.J., K.A. Willets, et al. (2005b). A novel fluorophore for two-photon-excited single-molecule fluorescence. Chem. Phys. 318: 7–11.CrossRefGoogle Scholar
  68. Schütz, G.J., G. Kada, et al. (2000). Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19: 892–901.PubMedCrossRefGoogle Scholar
  69. Soper, S.A., H.L. Nutter, et al. (1993). The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem. Photobiol. 57: 972–977.CrossRefGoogle Scholar
  70. Su, K.H., Q.-H. Wei, et al. (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3: 1087–1090.CrossRefGoogle Scholar
  71. Sundaramurthy, A., K.B. Crozier, et al. (2005). Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys. Rev. B 72: 165409.CrossRefGoogle Scholar
  72. Sundaramurthy, A., P.J. Schuck, et al. (2006). Toward nanometer-scale optical photolithography: Using the near-field of bowtie optical nanoantennas. Nano Lett. 6: 355–360.PubMedCrossRefGoogle Scholar
  73. Toutchkine, A., V. Kraynov, et al. (2003). Solvent-sensitive dyes to report protein conformational changes in living cells. J. Amer. Chem. Soc. 125: 4132–4145.CrossRefGoogle Scholar
  74. Trautman, J.K., J.J. Macklin, et al. (1994). Near-field spectroscopy of single molecules at room temperature. Nature 369: 40–42.CrossRefGoogle Scholar
  75. Tsien, R.Y. and A. Waggoner (1995). Fluorophores for confocal microscopy. Handbook of Biological Confocal Microscopy 2nd ed. J.B. Pawley. New York: Plenum Press, 267–279.Google Scholar
  76. Vallee, R.A.L., M. Cotlet, et al. (2004). Single-molecule conformations probe free volume in polymers. J. Amer. Chem. Soc. 126: 2296–2297.CrossRefGoogle Scholar
  77. Vrljic, M., S.Y. Nishimura, et al. (2002). Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J. 83: 2681–2692.PubMedCrossRefGoogle Scholar
  78. Wang, Z., Rothberg, L.J. (2005). Origins of blinking in single-molecule raman spectroscopy. J Chem Phys B: jp0460947.Google Scholar
  79. Watkins, L.P. and H. Yang (2004). Information bounds and optimal analysis of dynamic single-molecule measurements. Biophys. J. 86: 4015–4029.PubMedCrossRefGoogle Scholar
  80. Weiss, S. (1999). Fluorescence spectroscopy of single biomolecules. Science 283: 1676–1683.PubMedCrossRefGoogle Scholar
  81. Willets, K.A., P.R. Callis, et al. (2004). Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J. Phys. Chem. B 108: 10465–10473.CrossRefGoogle Scholar
  82. Willets, K.A., S.Y. Nishimura, et al. (2005). Nonlinear optical chromophores as nanoscale emitters for single-molecule spectroscopy. Acc. Chem. Res. 38(7): 549–556.PubMedCrossRefGoogle Scholar
  83. Willets, K.A., O. Ostroverkhova, et al. (2003a). New fluorophores for single-molecule spectroscopy. J. Amer. Chem. Soc. 125: 1174–1175.CrossRefGoogle Scholar
  84. Willets, K.A., O. Ostroverkhova, et al. (2003b). Novel fluorophores for single-molecule imaging. Proc. SPIE 5222: 150–157.CrossRefGoogle Scholar
  85. Wright, D., U. Gubler, et al. (2001). A high performance photorefractive polymer composite with 2-dicyanomethylene-3-cyano-2, 5-dihydrofuran chromophore. Appl. Phys. Lett. 79(26): 4274–4276.CrossRefGoogle Scholar
  86. Xu, C. and W.W. Webb (1996a). Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Amer. B 13: 481–491.CrossRefGoogle Scholar
  87. Xu, C., W. Zipfel, et al. (1996b). Multiphoton fluorescence excitation: New spectral windows for biological nonlinear spectroscopy. Proc. Nat. Acad. Sci. USA 93: 10763–10768.PubMedCrossRefGoogle Scholar
  88. Xu, H. and M. Kaell (2003). Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chem. Phys. Chem. 4: 1001–1005.PubMedGoogle Scholar
  89. Zenhausern, F., Y. Martin, et al. (1995). Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution. Science 269: 1083–1085.PubMedCrossRefGoogle Scholar
  90. Zhang, C., C.G. Wang, et al. (2001). Progress toward device-quality second-order nonlinear optical materials. 4. A trilink high mu beta NLO chromophore in thermoset polyurethane: A “guest-host” approach to larger electrooptic coefficients. Macromol. 34: 253–261.CrossRefGoogle Scholar
  91. Zhao, L., K.L. Kelly, et al. (2003). The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B , 107: 7343–7350.CrossRefGoogle Scholar
  92. Zhuang, X. and M. Rief (2000). Single-molecule protein folding. Curr. Opin. Struct. Biol. 13: 88–97.CrossRefGoogle Scholar
  93. Zyss, J., Ed. (1994). Molecular Nonlinear Optics. New York: Academic Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • W. E. Moerner
    • 1
  • P. James Schuck
    • 1
  • David P. Fromm
    • 1
  • Anika Kinkhabwala
    • 1
  • Samuel J. Lord
    • 1
  • Stefanie Y. Nishimura
    • 1
  • Katherine A. Willets
    • 1
  • Arvind Sundaramurthy
    • 2
  • Gordon Kino
    • 2
  • Meng He
    • 3
  • Zhikuan Lu
    • 3
  • Robert J. Twieg
    • 3
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of ChemistryKent State UniversityKentUSA

Personalised recommendations