Advertisement

A Novel Clonal Selection Algorithm Based Fragile Watermarking Method

  • Veysel Aslantas
  • Saban Ozer
  • Serkan Ozturk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4628)

Abstract

In this paper, a novel fragile watermarking method based on clonal selection algorithm (CSA), CLONALG, is presented. In Discrete Cosine Transform (DCT) based fragile watermarking techniques, there occurs some degree of rounding errors because of the conversion of real numbers into integers in the process of transformation of image from frequency domain to spatial domain. In this paper, the rounding errors caused by this transformation process are corrected by using CLONALG. Simulation results show that extracted watermark is obtained exactly the same as embedded watermark and optimum watermarked image transparency is achieved. In addition, the performance comparison of CLONALG and genetic algorithm (GA) based methods is realized.

Keywords

Fragile image watermarking discrete cosine transform clonal selection algorithm multimedia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Potdar, V., Han, S., Chang, E.: A Survey of Digital Image Watermarking Techniques. In: Proceedings of the 3rd International IEEE Conference on Industrial Informatics, Perth Western Australia, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Pan, J.S., Huang, H.C., Jain, L.C. (eds.): Intelligent Watermarking Techniques, vol. 15. World Scientific Publishing Company, Singapore (2004)MATHGoogle Scholar
  3. 3.
    Lee, S.J., Jung, S.H.: A Survey of Watermarking Techniques Applied to Multimedia. In: ISIE 2001, Pusan, Korea, pp. 272–277 (2001)Google Scholar
  4. 4.
    Lin, E.T., Podilchuk, I., Delp, E.J.: Detection of Image Alterations Using Semi-Fragile Watermarks. In: Proc. of the SPIE Int. Conference on Security and Watermarking of Multimedia Contents II, vol. 3971 (2000)Google Scholar
  5. 5.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
  6. 6.
    Karaboğa, D., Okdem, S.: A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm. Elektrik, Turkish Journal of Electrical & Computer Sciences 12(1), 53–60 (2004)Google Scholar
  7. 7.
    Kumsawat, P., et al.: Wavelet-Based Image Watermarking Using the Genetic Algorithm. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 643–649. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Kumsawat, P., Attakitmongcol, K., Srikaew, A.: A New Approach for Optimization in Image Watermarking by Using Genetic Algorithms. IEEE Transactions on Signal Processing 53(12), 4707–4719 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wang, F., et al.: VQ-Based Gray Watermark Hiding Scheme and Genetic Index Assigment. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 73–80. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Shieh, C., et al.: Genetic Watermarking Based on Transform-domain Techniques. Pattern Recognition Society 37(3), 555–565 (2004)CrossRefGoogle Scholar
  11. 11.
    Chang, Y.L., Sun, K.T, Chen, Y.H.: ART2-Based Genetic Watermarking, Advanced Information Networking and Applications. In: AINA 2005, 19th International Conference, vol. 1, pp. 729–734 (2005)Google Scholar
  12. 12.
    Shih, F.Y., Wu, Y.: Enhancement of Image Watermark Retrieval Based on Genetic Algorithm. Journal of Visual Communication and Image Representation 16, 115–133 (2005)CrossRefGoogle Scholar
  13. 13.
    Aslantas, V.: A Singular-value Decomposition-based Image Watermarking using Genetic Algorithm. Int. J. Electron. Commun. (AEU) (2007), doi: 10.1016/ j.aeue.2007.02.010Google Scholar
  14. 14.
    De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Workshop Proceedings of GECCO 2000, Workshop on Artificial Immune Systems and their Applications, Las Vegas, USA, pp. 36–37 (2000)Google Scholar
  15. 15.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6(3), 239–251 (2001)Google Scholar
  16. 16.
    The Clonal Selection Theory of Acquired Immunity. Cambridge Univ. Press, Cambridge, UK (1959)Google Scholar
  17. 17.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6, 239–251 (2002)CrossRefGoogle Scholar
  18. 18.
    Ada, G.L., Nossal, G.: The clonal selection theory. Scientific American 257, 50–57 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Veysel Aslantas
    • 1
  • Saban Ozer
    • 2
  • Serkan Ozturk
    • 1
  1. 1.Erciyes University, Engineering Faculty, Computer Engineering Div., 38039 KayseriTurkey
  2. 2.Erciyes University, Engineering Faculty, Electrical-Electronics Engineering Div., 38039 KayseriTurkey

Personalised recommendations